Lightning-rainfall relationship in El Niño and La Niña events during the Indian summer monsoon over central India
Main Article Content
Abstract
The Indian summer monsoon rainfall (June-September) on a regional scale is critically important for agriculture and water management in India. The current study presents the lightning-rainfall relationship during El Niño (drought) and La Niña (flood) events in the Indian summer monsoon over central India. The results show that the flash count, Bowen ratio, surface maximum temperature, total heat flux, aerosol optical depth (AOD), sea surface temperature (SST), and Niño 3.4 index are increased by 36, 62, 19, 12, 46, 4.7%, and 0.3 ºC (warmer), whereas the rainfall is decreased by 15% during El Niño years with respect to normal years. The flash count, Bowen ratio, surface maximum temperature, and AOD are found to decrease by 15, 11, 3.5, and 11.1% during La Nina years, whereas the rainfall, total heat flux, SST, and Niño 3.4 index are found to increase by 2.4, 1.72, 0.36%, and –0.68 ºC (cooler) during La Niña years with respect to normal years. The increase in the flash count and the reduction in rainfall are associated with the warm phase of El Niño-Southern Oscillation (ENSO) (El Niño), which causes the weakening of the Indian summer monsoon. The decrease in flash count and increase in rainfall is due to the cold phase of ENSO (La Niña) and is associated with the strengthening of the Indian monsoon season. The increase in the number of break days and low-pressure systems also plays an important role in El Niño and La Niña years, respectively, over central India during the Indian summer monsoon.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics
References
Abhilash S, Sahai AK, Pattnaik S, Goswami BN, Kumar A. 2014. Extended range prediction of active-break spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP climate forecast system. International Journal of Climatology 34 : 98-113. https://doi. 10.1002/joc.3668.
Ahmad A, Ghosh M. 2017. Variability of lightning activity over India on ENSO Time scales. Advances in Space Research 60(1) : 2379-2388. https://doi.10.1016/j.asr.2017.09.018.
Alexander MA, Kilbourne KH, Nye JA.2014. Climate variability during warm and cold phases of the Atlantic Multi-decadal Oscillation (AMO). Journal of Marine Systems 133 : 14–26.
Allan R, Lindesay J, Parker D. 1996. E1 Niño Southern Oscillation and Climatic Variability. CSIRO, 405 pp.
Balaji B, Prabhakaran T, Rao JY, Kiran T, Dinesh G, Chakravarty K, Sonbawne SM, Rajeevan, M. 2017. Potential of collocated radiometer and wind profiler observations for monsoon studies. Atmospheric Research 194, 17-26. https://doi:10.1016/j.atmosres. 2017.04.023.
Bates TS, et al. 2008. Boundary layer aerosol chemistry during TexAQS/GoMACCS 2006: Insights into aerosol sources and transformation processes. Journal of Geophysical Research : Atmospheres 113 : 1-18. https://doi:10.1029/2008JD010023.
Berdeklis P, List R. 2001. The ice crystal-graupel collision charging mechanism of thunderstorm electrification. Journal of Atmospheric Sciences 58 : 2751–2770.
Beringer J, Tapper NJ. 2002. Surface energy exchanges and interactions with thunderstorms during the Maritime Continent Thunderstorm Experiment (MCTEX). Journal of Geophysical Research : Atmospheres 107(D21) 4552, 1-13. https://doi:10.1029/2001JD001431.
Boccippio DJ, Cummins KL, Christian HJ, Goodman SJ. 2000. Combined satellite–and surface-based estimation of the intra-cloud-to-ground lightning ratio over the continental United State. Monthly Weather Review 129(1), 108-122.
Bond DW, Steiger S, Zhang R, Tie X, Orville RE (2002) The importance of NOx production by lightning in the tropics. Atmospheric Environment 36 : 1509-1519.
Cecil DJ, Buechler DE, Blakeslee RJ. 2014. Gridded lightning climatology from TRMM LIS and OTD : dataset description. Atmospheric Research 135 : 404-414. https://doi.org/10.1016/j.atmos.res. 2012.06.028.
Chate DM, Rao PSP, Naik MS, Momin GA, Safai PD, Ali K. 2003. Scavenging of aerosols and their chemical species by rain. Atmospheric Environment 37 : 2477-2484. https://doi:10.1016/S1352-2310(03) 00162-6.
Chate DM, Tinmaker MIR, Aslam MY, Ghude SD. 2017. Climate indicators for lightning over sea, sea-land mixed and land-only surfaces in India. International Journal of Climatology 37 : 1672-1679. https://doi:10. 1002/joc.4802.
Chen J, Shao C, Jiang, S, Qu L, Zhao F, Dong G. 2019. Effects of changes in precipitation onenergy and water balance in a Eurasian meadow steppe. Ecological Processes 8(17) : 1-15. https://doi.org/10.1186/ s13717-019-0170-z.
Christian HJ, et al. (1999)The lightning imaging sensor. Proc of 11th International Conference on Atmospheric Electricity, National Aeronaut and Space Administration, Guntersville, AI, 746-749.
Deierling W, Petersen WA. 2008. Total lightning activity as an indicator of updraft characteristics. Journal of Geophysical Research : Atmosphere 113(D16210) : 1-11. https://doi:10.1029/2007 JD009598.
Devara PCS, Vijayakumar K, Sonbawne SM, Holben BN, Rao SVB, Jayasankar CK. 2019. Study of aerosol over Indian subcontinent during El Niño and La events : Inferring land-air-sea interactions. International Journal of Environmental Sciences and National Resources 16(5), 99-107.
Dowdy AJ. 2016. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world. Scientific Report 6(1) : 1-10. https://doi.10.1038/srep20874.
Fallmann J, Lewis H, Castillo JM, Arnold A, Ramsdale S. 2017. Impact of sea surface temperature on stratiform cloud formation over the North sea. Geophysical Research Letters 44 : 4296-4303. https://doi.10.1002/2017glo73105.
Fasullo J. 2012. A mechanism for land-ocean contrast in global monsoon trends in a warming climate. Climate Dynamics 39 : 1137-1147. https://doi.org/10.1007/s00382-011-1270-3.
Gadgil S, Joseph PV. 2003. On breaks of the Indian monsoon. Journal of Earth System Sciences 112(4) : 429-558. https://doi.10.1007/BF02709778.
Gadgil S, Gadgil S. 2006. The Indian monsoon, GDP and agriculture. Economic and Political Weekly 41(47) : 4887–4895. https://www.jstor.org/stable/4418949.
Gadgil S, Francis PA, Vinayachandran PN. 2019. Summer monsoon of 2019 : understanding the performance so far and speculating about the rest of the season. Current Science 117(5) : 783-793. https://doi.10.18520/cs/v117/i5/783-793.
Gautam AS, Joshi A, Chandra S, Dumka UC, Siingh D, Singh RP. 2022. Relationship between Lightning and Aerosol Optical Depth over the Uttarakhand Region in India : Thermodynamic Perspective. Urban Science 6(70) : 1-19. https://doi.org/10.3390/urbansci 6040070.
Ghosh S, Bhatla R, Mall RK, Srivastava P, Sahai AK. 2019. Aspect of ECMWF down scaled regional climate modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions. Theoretical Applied Climatology 135 : 1559-1581. https://doi.org/10. 1007/s00704-018-2432-6.
Godbole R. 1977. The composite structure of the monsoon depression. Tellus 29 : 25–40. https://doi: 10.1111/j.2153-3490.1977.tb00706.x.
O’Gorman PA. 2015. Precipitation Extremes Under Climate Change Current Climate Change Reports 1 : 49-59. https://doi.org/10.1007/s40641-015-0009-3
Goswami BN, Mohan RSA. 2001. Intraseasonal oscillation and interannual variability of the Indian summer monsoon. Journal of Climate1 4 : 1180-1198. https://doi:10.1175/1520-0442(2001)014 <3C1180:IOAIVO>3E2.0.CO;2.
Goswami BN. 2021. Complexity and Indian monsoon in a rapidly changing climate. Physics News 52 : 15-20.
Gouda KC, Sahoo SK, Samantray P, Shivappa H. 2017. Comparative study of monsoon rainfall variability over India and the Odisha State. Climate 5(79) : 1-11. https://doi:10.3390/ cli5040079.
Guha A, Banik T, Roy R, Kumar B. 2017. The effect of El Niño and La Niña on lightning activity : Its relation with meteorological and cloud microphysical parameters. Natural Hazards 85 : 403–424. https://doi.org/10.1007/s11069-016-2571-y
Gustafsson M, Rayner D, Chen D. 2010. Extreme rainfall events in southern Sweden : where does the moisture come from? Tellus 62A : 605–616.
Guo X, Wang L, Tiana L, Lia X. 2016. Elevation-dependent reductions in wind speed over and around the Tibetan Plateau. International Journal of Climatology 1117-1126. https://doi:10.1002/ joc.4727.
Hamid EF, Kawasaki Z-I, Mardiana R. 2001. Impact of the 1997 – 98 El Niño event on lightning activity over Indonesia. Geophysical Research Letters 28 : 147-150. https://doi.org/10.1029/ 2000 GL011374.
Hunt KMR, Fletcher JK. 2019. The relationship between Indian monsoon rainfall and low-pressure system. Climate Dynamics 53 : 1859-1871. https://doi.org/10.1007/s00382-019-04744-x.
India Meteorological Department (IMD). 1979. Track of storms and depression in the Bay of Bengaland the Arabian Sea. 1891-1970, report, New Delhi.
Jaswal AK, Singh V, Bhambak SR. 2012. Relationship between sea surface temperature and surface air temperature over Arabian sea, Bay of Bengal and Indian Ocean. Journal of Indian and Geophysical Union 16(2) : 41-53.
Kamra AK, Athira UN. 2016. Evolution of the impacts of the 2009-10 El Niño and the 2010-11 La Niña on flash rate in wet and dry environments in the Himalayan range. Atmospheric Research 182 : 189-199.
Kandalgaonkar SS, Tinmaker MIR, Kulkarni MK, Nath AS.2002. Thunderstorm activity and sea surface temperature over the island stations and along the east and west coast ofIndia. Mausam 53 : 245-248.
Kandalgaonkar SS, Kulkarni JR, Tinmaker MIR, Kulkarni MK. 2010a. Land-ocean contrasts in lightning activity over the Indian region. International Journal of Climatology 30 : 137-145. https://doi.10. 1002/joc.1970.
Kar SK, Ha KJ. 2003. Characteristics differences of rainfall and cloud to ground lightning activity over south Korea during the summer monsoon season. Monthly Weather Reviews 131 : 2312-2323. https://doi. 10.1175/1520-0493(2003)1312.0.CO;2.
Kilinc M, Beringer, J. 2007. The spatial and temporal distribution of lightning strikes and their relationship with vegetation type, elevation, and fire scars in the Northern Territory. Journal of Climate 20(7) : 1161-1173. https://doi.org/10.1175/JCL14039.1.
Kotroni V, Lagouvardos K. 2016. Lightning in the Mediterranean and its relation with sea-surface temperature. Environmental Research Letters 11(034006) : 1-8. https://dx.doi.org/10.1088/ 1748-9326/11/3/ 034006.
Krishnamurti TN, Ramanathan Y. 1982. Sensitivity of the monsoon onset to differential heating. Journal of Atmospheric Sciences 39 : 1290–1306.
Krishnamurthy V, Shukla J. 2000. Intraseasonal and interannual variability of rainfall over India. Journal of Climate 13(24) : 4366-4377.
Krishnamurthy V, Ajayamohan RS. 2010. Composite structure of monsoon low pressure systemsand its relation to Indian rainfall. Journal of Climate 23(16) : 4285-4305. https://doi.org/10.1175/ 2010JCL 2953.1.
Kulkarni MK, Revadekar JV, Verikoden, H. 2013. About the variability in thunderstorm and rainfall activity over India and its association with El Niño and La Niña. Natural Hazards 69 : 2005-2019. https://10.1007/s11069-013-0790.
Kutta E, Hubbart JA, Eichler TP, Lupo AR. 2018. Symmetry of energy divergence anomalies associated with the El Niño-Southern Oscillation. Atmosphere 9(9) : 1-19. https://doi.org/ 10.3390/atmos9090342.
Lau K–M, Kim K–M, Hsu CN, Holben BN. 2009. Possible influences of air pollution, dust and sandstorms on the Indian monsoon. World Meteorological Organization Bulletin 58 : 22-30.
Li J, Wu X, Yang J, Jiang R, Yuan T, Lu J, Sun M. 2020a. Lightning activity and its association with surface thermodynamics over the Tibetan Plateau. Atmospheric Research 245 : 1-7. https://doi:10.1016/ j.atmosres.2020.105118.
Li XF, Blenkinsop S, Barbero R, Yu J, Lewis E, Lenderink G, Guerreiro S, Chan S, Li Y, Ali H, Herrera RV, Kendon E, Fowler HJ. 2020b. Global distribution of the intensity and frequency of hourly precipitation and their responses to ENSO. Climate Dynamics 54 : 4823–4839. https://doi.org/ 10.1007/s00382-020-05258-7.
Liu Y, Cheng Y, Wang S, Wei W et al. 2020. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon : relative importance of aerosol-cloud and aerosol-radiation interaction. Atmospheric Chemistry and Physics 20 : 13283-13301. https://doi.org/10.5194/acp-20-13283-2020.
Mandke S, Sahai A, Shinde M, Joseph S, Chattopadhyay R.2007. Simulated changes in active/break spells during the Indian summer monsoon due to enhanced CO2 concentrations : assessment from selected coupled atmosphere-ocean global climate models. International Journal of Climatology 27(7) : 837-859. https://doi.org/10.1002/joc.1440.
Manohar GK, Kandalgaonkar SS, Tinmaker MIR. 1999. Thunderstorm activity over India and the Indian southwest monsoon. Journal of Geophysics Research : Atmosphere104 : 4169-4188.
Manohar GK, Kesarkar AP. 2003 Climatology of thunderstorm activity over the Indian region : 1. A study of east-west contrast. Mausam 54 : 819-828.
Manohar GK, Kesarkar AP. 2005. Climatology of thunderstorm activity over the Indian region : III. latitudinal and seasonal variation. Mausam 56 : 581-592.
Manoj MG, Devara P, Joseph S, Sahai A. 2012. Aerosol indirect effect during the aberrant Indian summer monsoon breaks of 2009. Atmospheric Environment 60(1), 153-163. https://doi. 10.1016/j.atmosenv.2012.06.007.
Matsui T, Chern J, Tao W, Lang S, Satoh M, Hashino T, Kubota T. 2016. On the land–ocean contrast of tropical convection and microphysics statistics derived from TRMM satellite signals and global storm‐resolving models. Journal of Hydrometeorology 17(5) : 1425–1445. https://doi. org/10.1175/JHM‐D‐15‐0111.1
Menon S, Hansen J, Nazarenko L, Luo Y. 2002. Climate effects of black carbon aerosols in China and India. Science 297 : 2250-2253. https://doi. 10.1126/science.1075159.
Miglietta M, Mazon J, Motola V, Pasini, A. 2017. Effect of a positive sea surface temperature anomaly on a Mediterranean tornadic supercell. Scientific Report 7(12828) : 1-8. https://doi:10. 1038/s41598-017-13170-0.
Mishra V, Thirumalai K, Singh D, Aadhar S. 2020. Future exacerbation of hot and dry summer monsoon extremes in India. Climate and Atmospheric Science 3(1) : 1-9. https://dol.10.1038/ s41612-020-0113-5.
Morwal SB, Narkhedkar SG, Padmakumari B, Maheskumar RS, Deshpande CG, Kulkarni JR. 2017. Intra-seasonal and Inter-annual variability of Bowen ratio over rain-shadow region of North peninsular India. Theoretical and Applied Climatology 128 : 835-844. https://doi:10. 1007/s00704-016-1745-6.
Nemani RR, Running SW, Pielke RA, Chase TN.1996. Global vegetation changes from coarse resolution satellite data. Journal Geophysical Research 101 : 7157–7162. https://doi:10. 1029/95JD02138.
Niu F, Li, Z. 2012. Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistryand Physics 12 : 8491–8498. https://doi. org/10.5194/acp-12-8491-2012.
Pai DS, Sridhar L, Kumar R. 2016. Active and break events of Indian summer monsoon during 1901-2014. Climate Dynamics 46(11-12) : 3921-3939.
Pal I, Tabbaa A. 2010. Regional changes in extreme monsoon rainfall deficit and excess in India. Dynamics of Atmospheres and Oceans 49(2-3) : 206-214. https://doi.org/10.1016/j.dynatmoce. 2009.07.001.
Parasnis SS, Goyal SS. 1990. Thermodynamical features of the atmospheric boundary layer during the summer monsoon. Atmospheric Environment 24(4) : 743-752.
Patwardhan S, Sooraj KP, Varikoden H, Vishnu S, Koteswararao K, Ramarao MVS, Pattanaik DR. 2020. Synoptic Scale Systems, 143–154. Springer Singapore, Singapore.
Praveen V, Sandeep S, Ajayamohan, RS. 2015. On the relationship between mean monsoon precipitation and low pressure systems in climate model simulations. Journal of Climate 28(13) : 5305-5324. https://doi.org/10.1175/JCLI-D-14-00415.1
Philander SGH. 1985 El Niño and La Niña. Journal of Atmospheric Science 42(23) : 2652-2662. https://doi.org/10.1175/1520-0469(1985)<2652:ENALN>2.0.CO;2.
Qie X, Toumi R, Yuan T. 2003. Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. Journal of Geophysical Research 108(D17) : 1-10. https://doi.org/10. 1029/2002JD003304.
Raghavan S, Rajesh S. 2003. Trends in tropical cyclone impact : a study in Andhra Pradesh, India. Bulletin of the American Meteorological Society 84(5) : 635-644. https://doi.10.1175/ BAMS-84-5-635.
Rajeevan M, Gadgil S, Bhate J. 2010. Active and break spells of the Indian summer monsoon. Journal of Earth System Science 119(3) : 229–247. https://doi.10.1007/s12040-010-0019-4.
Ramachandran S, Kedia S. 2009. Black carbon aerosols over an urban region :radiative forcing and climate impact. Journal of Geophysical Research : Atmosphere 115(D10202) : 1-11. https:// doi:1029/2009JD013560, 2010D10202.
Ramachandra S, Kedia, S. 2013. Aerosol-precipitation interactions over India : Review and future perspectives. Advance in Meteorology l649156 : 1-26. https://doi.org/10.1155/2013/ 649156.
Ramamurthy K. 1969. Some aspects of the “break” in the Indian southwest monsoon during July and August. Forecasting Manual, Rep. IV-18.3, India Meteorological Department, 29pp.
Rao TN, Saikranthi K, Radhakrishna B, Bhaskara Rao SV. 2016. Differences in the climatological characteristics of precipitation between active and break spells of the Indian summer monsoon. Journal of Climate 29 : 7797–7814, 2016.
Rasmusson EM, Carpenter TH. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Monthly Weather Review 110 : 354-384. https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO; 2.
Rosenfeld D, Lohmann Raga GB, O'Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO. 2008. Flood or Drought : How do aerosols affects precipitation?. Science 321 : 1309-1313.
Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M. 2017. Threefold rise in widespread extreme rain events over central. Nature Communication 8 : 708, 1-11. https://doi.10.1038/s41467-017-00744-9
Saha U, Siingh D, Midya SK, Singh RP, Singh AK, Kumar, S.2017. Spatio-temporal variability of lightning and convective activity over South/South-East Asia with an emphasis during El Niño and La Niña. Atmospheric Research 197 : 150-166. https://doi.10.1016/ j.atmosres.2017.07.005.
Samanta D, Hameed SN, Jin D, Thilakan V, Ganai M, Rao AS, Deshpande M. 2018. Impact of a narrow coastal Bay of Bengal sea surface temperature front on an Indian summer monsoon simulation. Scientific Report 8 : 1-12.https://doi:10.1038/s41598-018-35735-3.
Satori G, Williams ER, Lemperger I. 2009. Variability of global lightning on the ENSO time scale. Atmospheric Research 91(2) : 500-507. https://doi.10.1016/j.atmosres.2008.06.014.
Shi Z, Tan Y, Liu L, Liu J, Lin X, Wang M, Luan, J. 2018. Effects of relative humidity on electrification and lightning discharges in thunderstorms. Terrestrial Atmospheric and Oceanic Sciences 29(6), 695–708.
Shi Z, Li L-Y, Tan Y, Wang H, Li C. 2019. A numerical study of aerosol effects on electrification numerical study of aerosol effects on electrification with different intensity thunderclouds. Atmosphere 10 : 508, 1-20.
Sikka DR. 1977. Some aspects of the life history, structure and movement of monsoon depressions. Pure and Applied Geophysics 115(5-6) : 1501-1529. https://10.1007/BF 00874421.
Srivastava A, Rao AS, Rao DN, George G, Pradhan M (2011) Structure, characteristics, and simulation of monsoon low-pressure systems in CFSv2 coupled model. Journal of Geophysical Research1 22 : 1-22. https://doi.10.1002/2016JC012322.
Sorland SL, Sorteberg, A. 2016. Low pressure systems and extreme precipitation in central India : sensitivity to temperature changes. Climate Dynamics 47: 465-480. https://doi.10. 1007/s00382- 015-2850-4.
Subrahmanyam MV, Wang D. 2011. Impact of latent heat flux on Indian summer monsoon during ElNiño/La Niña years. Journal of Tropical Meteorology 17(4) : 430-440.https://doi.10.3969. j.issn.1006-8775.2011.04.013.
Sun J, Ariya, PA. 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN) : A review. Atmospheric Environment 40(5) : 795-820. https://doi.10.1016/j.atmosenv.2005.05. 052.
Takahashi H, Luo ZJ, Stephens G, Mulholland JP. 2023. Revisiting the Land-Ocean Contrasts in Deep Convective Cloud Intensity Using Global Satellite Observations. Geophysical Research Letters 50 : e2022GL102089. https://doi. org/10.1029/2022GL102089.
Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K. 2014. Responses of tree pecies to heat waves and extreme heat events. Plant Cell and Environment 38 : 1699–1712.
Thomas L, Malap N, Grabowski WW, Dani KK, Prabhakaran T. 2018. Convective environment in premonsoon and monsoon conditions over the Indian subcontinent : the impact of surface forcing. Atmospheric Chemistry and Physics 18 : 7433-7488. https://doi:10.5194/ acp-18-7473-2018.
Tinmaker MIR, Nath AS, Kandalgaonkar SS. 2003. Probabilistic estimation of thunderstorm activity at a tropical inland station, Pune during post-monsoon season using Markov chain model. Mausam 54 : 932-934.
Tinmaker MIR, Ali K, Beig G. 2010a. Relationship between lightning activity over Peninsular India and sea surface temperature. Journal of Applied Meteorology and Climatology 49 : 828-835.
Tinmaker MIR, Ali K, Pawar SD. 2010b. Thunderstorm electrical parameters vis-à-vis rainfall and surface rainfall and surface air temperatures over a tropical inland station, Pune, India. Journal of Meteorological Society of Japan 88 : 915-924.
Tinmaker MIR, Aslam MY, Chate DM. 2014. Climatology of lightning activity over the Indian seas. Atmosphere-Ocean 52 : 314-320. https://doi.10.1080/07055900.2014.941323.
Tinmaker MIR, Aslam MY, Chate DM. 2015. Lightning activity and its association with rainfall and convective available potential energy over Maharashtra, India. Natural Hazards 77 : 293-304. https://doi.10.1007/s11069-015-1581-x.
Tinmaker MIR, Aslam MY, Ghude SD, Chate DM.2017. Lightning with rainfall during El Niño and La Niña events over India. Theoretical and Applied Climatology 130 : 391-400. https://doi. 10.1007/s00704-016-1883-x.
Tinmaker MIR, Ghude SD, Chate DM. 2019. Land-sea contrasts for climatic lightning activity over Indian region. Theoretical and Applied Climatology 138 : 931-940. https://doi.10.1007/ s00704-019-02862-4.
Tinmaker MIR, Dwivedi AK, Islam S, Ghude SD, Kulkarni SH, Khare MK, Chate DM. 2021a Lightning activity variability with prevailing weather parameters and aerosol loading over dry and wet regions of India. Pure and Applied Geophysics 178(18) : 1-13. https:// doi.10.1007/s00024- 021-02695-1.
Tinmaker MIR, Jena CK, Ghude SD, Dwivedi AK, Islam S, Kulkarni SH, Khare MK, Chate DM. 2021b. Relationship of lightning with different weather parameters during transition period of dry to wet season over Indian region. Journal of Atmospheric Solar-Terristrial Physics 220(D08209) : 105673, 1-9. https://doi.10.1016.j.jastp.2021.105673.
Tinmaker MIR, Ghude SD, Dwivedi AK, Islam S, Kulkarni SH, Khare M, Chate DM. 2022. Relationships among lightning, rainfall, and meteorological parameters over oceanic and land regions of India. Meteorology and Atmospheric Physics 134 : 1-11. https://doi:10.1007/ s00703-021-00841-x.
Toumi R, Qie X. 2004. Seasonal variation of lightning on the Tibetan Plateau : A Spring anomaly?. Geophysical Research Letters 31(L04115) : 1-4. https://doi:10.1029/2003GL018930.
Trenberth KE. 1997. The Definition of El Niño. Bulletin of the American Meteorological Soc 78(12) : 2771-2778. https://doi.org/10.1175/1520-0477(1997)078<2771:TDO ENO>2.0.CO;2.
Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophysical Research Letter 32(L14703) : 1-4. https://doi:10.1029/ 2005GL022760.
Twomey S. 1974. Pollution and the planetary albedo. Atmospheric Environment 8 : 1251-1256. https://doi.org /10.1016/0004-6981(74)90004-3.
Virtz K, Houze, R. 2016. Seasonal and intraseasonal variability of mesoscale convective systems over the south Asian monsoon region. Journal of Atmospheric Science 73(12) : 4735-4774. https://doi.10.1175/JAS-D-16-0022.1.
Walcek CJ. 1994. Cloud cover and its relationship to relative humidity during a springtime midlatitude cyclone. Monthly Weather Review 122 : 1021–1035.
Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas Reyes F. 2005 Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophysical Research Letters 32(L15711), 1-4. https://doi:10.1029/2005GL022734.
Warner J. 1968. A reduction in rainfall associated with smoke from sugar-cane fires: An inadvertent weather modification. Journal of Applied Meteorology 247–251.
Williams ER. 1992. The Schumann resonance : A global tropical thermometer. Science 256 : 1184–1187.
Williams ER, Stanfill, S. 2002. The physical origin of the land-ocean contrast in lightning activity. Comptes Rendus Physique 3(10), 1277-1292. https://doi.org/10.1016/S1631-0705(02)01407-X.
Williams ER, Rosenfeld D, Madden N, Gerlach, J et al. 2002. Contrasting convective regimes over the Amazon : Implications for cloud electrification. Journal of Geophysical Research : Atmosphere 107(D20) 8082 : 1-19. https://doi:10.1029/ 2001JD000380.
Williams ER, Chan T, Boccippio, D.2004. Islands as miniature continents : Another look at the land-ocean lightning contrast. Journal of Geophysical Research : Atmosphere 109D16206 : 1-5.
Yang X, Huang, P. 2022. The diversity of ENSO evolution during the typical decaying periods determined by an ENSO developing Mode. Journal of Climate 35(12): 3877-3889. https://doi. org/10.1175/JCLI-D-21-0892.1.
Yano YI, Chaboureau J-P, Guichard, F. 2005. A generalization of CAPE into potential-energy convertibility.Quarterly Journal of the Royal Meteorological Society 131(607) : 861-875. https://doi.org/ 10.1256/qj.03.188.
Yoshida S, Morimoto T, Ushio T, Kawasaki Z. 2009. A fifth-power relationship for lightning activity from tropical rainfall measuring mission satellite observations. Journal of Geophysical Research : Atmosphere D09104D114, 1-10. https://doi:10.1029/2008JD010370.
Yuan T, Qie X. 2005. Seasonal variation of lightning activities and related meteorological factors over the central Qinghai-Xizang Plateau. Acta Meteorologica Sinica 63(1) : 123-127.
Yuan T, Remer LA, Pickering KE, Yu H. 2011. Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophysical Research Letters 38(L04701) : 1-5. https://doi.org/10.1029/2010GL046052, 2011.
Zeng J, Zhang, Q. 2020. The trends in land surface heat fluxes over global monsoon domains and their responses to monsoon and precipitation. Scientific Report 10(5762) : 1-15. https://doi.org/ 10.1038/s41598-020-62467-0.
Zhang C. 1993. Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. Journal of Climate 6(10) : 1898-1913.https://10.1175/1520-0442(1993)006<1898:LSVOAD>2.0.CO;2.
Zhang Z, Krishnamurti TN. 1996. A generalization of Gill’s heat-induced tropical circulation. Journal of Atmospheric Sciences53 : 1045–1052.
Zhao P, Yin Y, Xiao H. 2015. The effects of aerosol on development of thunderstorm electrification : A numerical study. Atmospheric Research 153 : 376–391. https://doi.org/ 10.1016/j.atmosres. 2014.09.011.
Zheng Y, Rosenfeld, D. 2015. Linear relation between convective cloud base height and updrafts and application to satellite retrievals. Geophysical Research Letters 42 : 6485–6491, https://doi.org/10.1002/2015GL064809.
Zhu A, Xu H, Deng J, Ma J, Li S. 2021. El Niño southern oscillation (ENSO) effect an interannual variability in sorubg aerosols River East Asia. Atmospheric Chemistry and Physics 21 : 5919-5933. https://doi.org/10.519/acp-21-5919-2021.