An Index for Predicting Precipitation in the North Coast of Peru Using Logistic Regression

Main Article Content

Piero Rodrigo Rivas Quispe
Alex Anderson-Frey
Lynn A. McMurdie

Abstract

The northern coast of Perú has a desert-like climate. Since precipitation is so scarce, convective rainfall events have a major impact. However, little is known about these events and their prediction is complex. To date, anomalous convective activity has mainly been associated with warm sea surface temperature anomalies near the Peruvian coast. However, a more comprehensive analysis of atmospheric variables could shed light on how these precipitation events are triggered. To address this need, this study presents a new diagnostic index of precipitation using logistic regression. Satellite radar data are used as predictand and ERA5 reanalysis parameters are used as predictors. The new index includes the mixing ratio and divergence at different levels (950, 700 and 250 hPa) and the Galvez-Davison index. This combination yields a logistic regression equation that ultimately takes the form of a new index, which we call RAMI (Rivas, Anderson-Frey, McMurdie Index). The RAMI is useful for diagnosing rainfall in the northern coast of Peru and could be useful for forecasting in this area, region is devoid of surface radars or other severe weather instruments.

Downloads

Download data is not yet available.

Article Details

Sharing on:

PLUMX metrics

References

Aliaga-Nestares, Vannia, Rodriguez-Zimmermann, Diego, Quispe-Gutiérrez, Nelson. 2022. “Behavior of the ITCZ second band near the Peruvian coast during the 2017 coastal El Niño.” Atmósfera 36: 23-39. https://doi.org/10.20937/atm.53017

AMS Glossary of Meteorology. Available at:

https://www.ametsoc.org/index.cfm/ams/publications/glossary-of-meteorology/ (Accessed: 2023 September 27)

Applequist, Scott, Gahrs, Gregory E., Pfeffer, Richard L., Niu, Xu-Feng. 2002. “Comparison of Methodologies for Probabilistic Quantitative Precipitation Forecasting.” Weather and Forecasting 17(4): 783-799.

https://doi.org/10.1175/1520-0434(2002)017<0783:COMFPQ>2.0.CO;2

Cai, Wenju, McPhaden, Michael J., Grimm, Alice M., Rodrigues, Regina R., Taschetto, Andréa S., Garreaud, René D., Dewitte, Boris, Poveda, Germán, Ham, Yoo-Geun, Santoso, Agus, and others. 2020. “Climate impacts of the El Niño-southern oscillation on South America.” Nature Reviews Earth & Environment 1(4): 215-231. https://doi.org/10.1038/s43017-020-0040-3

Climate Prediction Center, NOAA. n.d. “NOAA's Climate Prediction Center.” Climate Prediction Center. Available at:

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. (Accessed: 2023 September 27)

Corporación Andina de Fomento (CAF). 2000. EL FENOMENO EL Niño 1997 - 1998 MEMORIA, RETOS Y SOLUCIONES. SCIOTECA (CAF). Available at: https://scioteca.caf.com/bitstream/handle/123456789/676/Las%20lecciones%20de%20El%20Ni%C3%B1o.Per%C3%BA.pdf. (Accessed: 2023 September 27)

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The Global Precipitation Measurement Mission. Bulletin of the American Meteorological Society, 95(5), 701-722. https://doi.org/10.1175/BAMS-D-13-00164.1

Galvez, Jose Manuel and Davison, Michel (2016). The Gálvez-Davison Index for Tropical Convection. National Oceanic and Atmospheric Administration. Available at: https://www.wpc.ncep.noaa.gov/international/gdi/ (Accessed: 2023 September 27)

Garreaud, René. 1999. “Multiscale Analysis of the Summertime Precipitation over the Central Andes.” Monthly Weather Review 127(5): 901-921. https://doi.org/10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2

George, J. J. (1960). Weather Forecasting for Aeronautics. Academic Press.

Hersbach, Hans, Bell, Bill, Berrisford, Paul, Hirahara, Shoji, Horányi, András, Muñoz-Sabater, Joaquín, Nicolas, Julien, Peubey, Carole, Radu, Raluca, Schepers, Dinand, Simmons, Adrian, Soci, Cornel, Abdalla, Saleh, Abellan, Xavier, Balsamo, Gianpaolo, Bechtold, Peter, Biavati, Gionata, Bidlot, Jean, Bonavita, Massimo, De Chiara, Giovanna, Dahlgren, Per, Dee, Dick, Diamantakis, Michail, Dragani, Rossana, Flemming, Johannes, Forbes, Richard, Fuentes, Manuel, Geer, Alan, Haimberger, Leo, Healy, Sean, Hogan, Robin J., Hólm, Elías, Janisková, Marta, Keeley, Sarah, Laloyaux, Patrick, Lopez, Philippe, Lupu, Cristina, Radnoti, Gabor, de Rosnay, Patricia, Rozum, Iryna, Vamborg, Freja, Villaume, Sebastien, Thépaut, Jean-Noël. 2020. “The ERA5 global reanalysis.” Quarterly Journal of the Royal Meteorological Society 146(730): 1999-2049. https://doi.org/10.1002/qj.3803

Masunaga, H., & L’Ecuyer, T. S. (2010). The Southeast Pacific Warm Band and Double ITCZ. Journal of Climate, 23(5), 1189-1208. https://doi.org/10.1175/2009JCLI3124.1

Miller, R. C. (1972). Notes on analysis and severe storm forecasting procedures of the Air Force Global Weather Central (Tech. Rept. 200(R)). Headquarters, Air Weather Service, USAF.

OPS (Organización Panamericana de la Salud). 2017. “Emergencia por Impacto del Fenómeno 'El Niño Costero' – Perú, 2017.” OPS/OMS | Organización Panamericana de la Salud. Available at: https://www.paho.org/es/peru/emergencia-por-impacto-fenomeno-nino-costero-peru-2017. (Accessed: 2023 September 27)

Pang, Guqian, He, Jian, Huang, Yuming, Zhang, Liuhong. 2019. “A binary logistic regression model for severe convective weather with numerical model data.” Advances in Meteorology, 2019: 1-15. DOI: 10.1155/2019/6127281

Pantoja, Hugo. 2004. “El Evento El niño-oscilación sur 1997 - 1998: su impacto en el departamento de Lambayeque (Perú).” Tiempo.com | Meteored. Available at: https://www.tiempo.com/ram/1597/el-evento-el-nio-oscilacion-sur-1997-1998su-impacto-en-el-departamento-de-lambayeque-peru/. (Accessed: 2023 September 27)

Peng, Chao-Ying Joanne, So, Tak-Shing Harry, Stage, Frances K, St. John, Edward P. 2002. “The use and interpretation of logistic regression in higher education journals: 1988--1999.” Research in higher education 43: 259-293. DOI: 10.1023/A:1014858517172

Quispe Vega, Kelita del Rocío. 2018. “El Niño Costero 2017: Precipitaciones extraordinarias en el norte de Perú.” Master's Thesis, Universidad de Barcelona.

Ramos, Y. 2015. El cambio climático y la lluvia en la costa norte. Instituto Geofisico del Peru (IGP). Available at: https://repositorio.igp.gob.pe/handle/20.500.12816/5064 (Accessed: 2023 September 27)

Rodríguez-Morata, C., Díaz, H. F., Ballesteros-Canovas, J. A., Rohrer, M., Stoffel, M. 2018. “The anomalous 2017 coastal El Niño event in Peru.” Climate Dynamics 52(9-10): 5605–5622. https://doi.org/10.1007/s00382-018-4466-y

Samasti, Mesut, Küçükdeniz, Tarık. 2023. “Precipitation forecast with logistics regression methods for harvest optimization.” International Journal of Agriculture Environment and Food Sciences 7(1): 213-222. DOI: 10.31015/jaefs.2023.1.26

Showalter, A. K. (1953). A Stability Index for Thunderstorm Forecasting. Bulletin of the American Meteorological Society, 34(6), 250-252. http://www.jstor.org/stable/26242131

Simpson, J., Kummerow, C., Tao, W.-K., & Adler, R. F. (1996). On the Tropical Rainfall Measuring Mission (TRMM). Meteorology and Atmospheric Physics, 60(1), 19-36. https://doi.org/10.1007/BF01029783

Sulca, Juan C., Rocha, Rosmeri P. da. 2021. “Influence of the Coupling South Atlantic Convergence Zone-El Niño-Southern Oscillation (SACZ-ENSO) on the Projected Precipitation Changes over the Central Andes.” Climate 9(5): 77. https://doi.org/10.3390/cli9050077

Takahashi, K., Martínez, A.G. 2019. The very strong coastal El Niño in 1925 in the far-eastern Pacific. Climate Dynamics 52: 7389–7415. https://doi.org/10.1007/s00382-017-3702-1

Takahashi, Ken, Montecinos, A., Goubanova, Katerina, Dewitte, Boris. 2011. “ENSO regimes: Reinterpreting the canonical and Modoki El Niño.” Geophysical Research Letters 38(10). Wiley Online Library. https://doi.org/10.1029/2011GL047364

Trenberth, Kevin E., Hoar, Timothy J. 1997. “El Niño and climate change.” Geophysical Research Letters 24(23): 3057-3060. https://doi.org/10.1029/97GL03092

University of Washington GPM-Ku Dataset (V06 and V07). GPM dataset. Department of Atmospheric Sciences, University of Washington. Available at: http://gpm.atmos.washington.edu/ (Accessed: 2023 September 27)

University of Washington TRMM-PR Dataset. TRMM dataset. Department of Atmospheric Sciences, University of Washington. Available at: http://trmm.atmos.washington.edu/ (Accessed: 2023 September 27)