Prediction of hydrological drought by the Standardized Precipitation Evapotranspiration Index in Chihuahua, Mexico, using machine learning algorithms
Main Article Content
Abstract
Despite being very common in the territory of Chihuahua, Chihuahua, Mexico, to experience drought, its consequences continue to severely impact the population without prior warning. Machine learning has proven to have a significant capacity for predicting time series, and the Standardized Precipitation Evapotranspiration Index (SPEI) is emerging as the most accurate drought indicator. In this study, predictive models were developed using Artificial Neural Networks (ANN), Long-Short Term Memory (LSTM), and Support Vector Regression (SVR) for estimating SPEI. Temporal scales of 12 months (SPEI 12) and 24 months (SPEI 24) for the period 1901-2020 in the mentioned territory were considered. This was done in order to simulate the behavior of drought cycles and enhance the ability to anticipate consequences. The accuracy indices used to evaluate the models were the mean squared error (MSE), mean absolute error (MAE), mean bias error (MBE), coefficient of determination (R2), and Kendall coefficient. In total, 956 experiments were conducted using the three methods, varying parameters such as the number of neurons, kernel, and polynomial degree. The two best models for each method were selected, and the average results revealed MSE = 0.0051, MAE = 0.0537, MBE = 0.0218, R2 = 0.8495, and Kendall coefficient = 0.7592 for SPEI 12; and MSE = 0.0024, MAE = 0.0375, MBE = 0.0162, R2 = 0.9218, and Kendall coefficient = 0.8558 for SPEI 24.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics
References
Abrámowitz, M., & Stegun, I.A. 1964. Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government printing office 55. https://doi.org/10.1119/1.15378.
Ahmad, M., Sinclair, C., & Werritty, A. 1988. Log-logistic flood frequency analysis. Journal of Hydrology, 98: 205-224. https://doi.org/10.1016/0022-1694(88)90015-7.
Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. Crop evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Fao, Rome, 300(9), D05109.
Ardila, F. 2009. Predicción de niveles del río Magdalena usando sistemas adaptativos basados en conocimiento. Ingeniería de Sistemas, Universidad Distrital Francisco José De Caldas, Bogotá, CO.
Awad, M., & Khanna, R. 2015. Efficient learning machines: theories, concepts, and applications for engineers and system designers. Springer nature.
Belayneh, A., & Adamowski, J. 2013. Drought forecasting using new machine learning methods. Journal of Water and Land Development 18: 3-13. https://doi.org/10.2478/jwld-2013-0001.
Dikshit, A., Pradhan, B., & Huete, A. 2021. An improved SPEI drought forecasting approach using the long short-term memory neural network. Journal of Environmental Management 283: 111979. https://doi.org/10.1016/j.jenvman.2021.111979.
Esparza, M. 2014. La sequía y la escasez de agua en México: Situación actual y perspectivas futuras. Secuencia 89: 193-219.
Global spei database. (n.d.). Index: SPEI, The Standardised Precipitation-Evapotranspiration Index. https://spei.csic.es/ (accessed 22 September 2022).
Hernández Vásquez, C.C. 2021. Pronóstico de sequías meteorológicas usando redes neuronales artificiales en la cuenca del río Sonora, México. Doctoral thesis, Universidad Autónoma Chapingo.
Hosking, J.R. 1990. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society: Series B (Methodological), 52: 105-124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x.
La sequía se extiende en 95 por ciento del territorio de Chihuahua. (n.d.). Pie de Página. https://piedepagina.mx/la-sequia-se-extiende-en-95-por-ciento-del-territorio-de-Chihuahua(accessed 22 September 2022).
Marsland, S. 2011. Machine learning: an algorithmic perspective. Chapman and Hall/CRC.
Mokhtar, A., Jalali, M., He, H., Al-Ansari, N., Elbeltagi, A., Alsafadi, K., Abdo, H.G., Sammen, S.S., Gyasi-Agyei, Y., & Rodrigo-Comino, J. 2021. Estimation of SPEI meteorological drought using machine learning algorithms. IEEE Access 9: 65503-65523. https://doi.org/10.1109/ACCESS.2021.3074305.
Monitor de sequía en México (MSM). (n.d.). Servicio Meteorológico Nacional. https://smn.conagua.gob.mx/es/climatologia/monitor-de-sequia/monitor-de-sequia-en-mexico (accessed 22 September 2022).
Ondrasek, G. 2020. Drought: Detection and Solutions. BoD–Books on Demand.
Raschka, S. 2015. Python machine learning. Packt publishing ltd.
Singh, V.P., Guo, H. & Yu, F.X. 1993. Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome. Stochastic Hydrol Hydraul 7: 163–177. https://doi.org/10.1007/BF01585596.
Significados. (n.d.). Significado de neurona. https://www.significados.com/neurona/ (accessed 22 September 2022).
Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical Review 38: 55-94. https://doi.org/10.2307/210739.
Tirivarombo, S., Osupile, D., & Eliasson, P. 2018. Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI). Physics and Chemistry of the Earth, Parts A/B/C, 106, 1-10. https://doi.org/10.2307/210739.
Vicente-Serrano, S.M., Beguería, S., & López-Moreno, J.I. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate 23: 1696-1718. https://doi.org/10.1016/j.pce.2018.07.001.
Vishwakarma, D. K., Kumar, R., Abed, S. A., Al-Ansari, N., Kumar, A., Kushwaha, N. L., Yadav, D., Kumwat., A., Kuriqi, A., Alataway, A., Dewidar, A. Z., & Mattar, M. A. 2023. Modeling of soil moisture movement and wetting behavior under point-source trickle irrigation. Scientific Reports, 13(1), 14981. https://doi.org/10.1038/s41598-023-41435-4.
Zhang, R., Chen, Z.-Y., Xu, L.-J., & Ou, C.-Q. 2019. Meteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, China. Science of the Total Environment 665: 338-346. https://doi.org/10.1016/j.scitotenv.2019.01.431.
Zhu, S., Hrnjica, B., Ptak, M., Choiński, A., & Sivakumar, B. 2020. Forecasting of water level in multiple temperate lakes using machine learning models. Journal of Hydrology 585, 124819. https://doi.org/10.1016/j.jhydrol.2020.124819.