Simulation of the Planetary Boundary Layer characteristics and its relation to air quality in the Metropolitan Area of Rio de Janeiro, Brazil
Main Article Content
Abstract
Frequently in the Metropolitan Area of Rio de Janeiro (MARJ), air quality monitoring stations record concentrations of particulate matter (PM10) and ozone (O3) above the reference values proposed by the World Health Organization. In this region, weather conditions combined with high atmospheric pollutant emissions and complex topography favor the occurrence of high concentrations of pollutants such as PM10 and O3 for several consecutive days. Hence, this study evaluated 1) the Planetary Boundary Layer (PBL) conditions simulated by the Weather Research and Forecasting (WRF) model and b) its relation to the air quality recorded during days with high concentrations of O3 and PM10 in the MARJ. Two episodes, one during summertime when high O3 concentrations were registered and one during the winter with high PM10 concentrations, were considered. The study used the WRF model to simulate conditions during those periods. Upper air and surface observations, synoptic charts, and satellite images were used to verify WRF results. In both periods, it was possible to identify the influence of the South Atlantic Subtropical Anticyclone associated with clear sky conditions, slight air subsidence, and weaker winds. The comparison with observations showed the model simulated coherently local weather conditions. Weaker winds and the performance of the sea breeze during the afternoon favored the maintenance of pollutants and their transport to the northeast/northwest of the region. In general, WRF consistently represented the height of the PBL and atmospheric stability. Therefore, this study shows that WRF results can be used to simulate PBL conditions and could be used as a source of upper air information in the MARJ.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics
References
Baklanov, A., Molina, L. T., and Gauss, M., 2016. Megacities, air quality and climate. Atmospheric Environment, 126, 235-249.
Banks, R. F., and Baldasano, J. M., 2016. Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain. Science of the total environment, 572, 98-113.
Banks, R. F., Tiana-Alsina, J., Baldasano, J. M., Rocadenbosch, F., Papayannis, A., Solomos, S., and Tzanis, C. G., 2016. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmospheric Research, 176, 185-201.
Beringui, K., Justo, E. P., Ventura, L., Gomes, R. G., Lionel-Mateus, V., Cruz, A. H., Almeida, A. C. L. B., Ramos, M. B., Suazo, J. A, Valle, P. H. R., and Gioda, A., 2023. The Contribution of Meteorological Parameters and the COVID-19 Partial Lockdown on Air Quality in Rio de Janeiro, Brazil. Journal of the Brazilian Chemical Society, 34, 69-82.
Bode, M., Hedde, T., Roubin, P., and Durand, P., 2021. Fine-resolution WRF simulation of stably stratified flows in shallow pre-alpine valleys: A case study of the KASCADE-2017 campaign. Atmosphere, 12(8), 1063.
Bodor, K., Szép, R., and Bodor, Z., 2022. Time series analysis of the air pollution around Ploiesti oil refining complex, one of the most polluted regions in Romania. Scientific Reports, 12(1), 11817.
BRASIL. Resolução n. 491, de 19 de novembro de 2018. Conselho Nacional do Meio Ambiente (CONAMA). Dispõe sobre padrões de qualidade do ar. Diário oficial da República Federativa do Brasil, Brasília, 19 nov 2018.
Carvalho, V. S. B., 2010. O impacto das megacidades sobre a qualidade do ar: os casos das regiões metropolitanas de São Paulo e do Rio de Janeiro. IAG/USP, São Paulo.
Carvalho, V. S. B., Freitas, E. D. D., Mazzoli, C. R., and Andrade, M. D. F., 2012. Avaliação da influência de condições meteorológicas na ocorrência e manutenção de um episódio prolongado com altas concentrações de ozônio sobre a Região Metropolitana de São Paulo. Revista Brasileira de Meteorologia, 27, 463-474.
Carvalho, V. S. B., Freitas, E. D., Martins, L. D., Martins, J. A., Mazzoli, C. R., and de Fátima Andrade, M., 2015. Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environmental Science & Policy, 47, 68-79.
Carvalho, H., 2021. New WHO global air quality guidelines: more pressure on nations to reduce air pollution levels. The Lancet Planetary Health, 5(11), e760-e761.
Cavalcanti, P. M., 2003. Avaliação dos impactos causados na qualidade do ar pela geração termelétrica. 148 f. Tese (Mestrado em Ciências em Planejamento Energético) – Coordenação de Pós-Graduação de Engenharia, Universidade Federal do Rio de Janeiro, RJ.
Chen, S. H., and Sun, W. Y., 2002. A one-dimensional time dependent cloud model. Journal of the Meteorological Society of Japan. Ser. II, 80(1), 99-118.
Clifton, A., Schreck, S., Scott, G., Kelley, N., and Lundquist, J. K., 2013. Turbine inflow characterization at the national wind technology center. Journal of solar energy engineering, 135(3), 031017.
Crawford, J., Chambers, S., Cohen, D., Williams, A., Griffiths, A., and Stelcer, E., 2016. Assessing the impact of atmospheric stability on locally and remotely sourced aerosols at Richmond, Australia, using Radon-222. Atmospheric Environment, 127, 107-117.
Dantas, G., Siciliano, B., França, B. B., da Silva, C. M., and Arbilla, G., 2020. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Science of the total environment, 729, 139085.
DECEA - Departamento de Controle do Espaço Aéreo, 2023. Como decodificar o METAR e o SPECI?. Available at https://ajuda.decea.mil.br/base-de-conhecimento/como-decodificar-o-metar-e-o-speci/ (accessed 2023 August 17).
Dereczynski, C. P., Oliveira, J. S. D., and Machado, C. O., 2009. Climatologia da precipitação no município do Rio de Janeiro. Revista Brasileira de Meteorologia, 24, 24-38.
Dudhia, J., 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences, 46(20), 3077-3107.
Ferreira, G. W., and Reboita, M. S., 2022. A new look into the South America precipitation regimes: Observation and Forecast. Atmosphere, 13(6), 873.
Geraldino, C. G. P., Martins, E. M., da Silva, C. M., and Arbilla, G., 2017. An analytical investigation of ozone episodes in Bangu, Rio de Janeiro. Bulletin of environmental contamination and toxicology, 98, 632-637.
Herrera‐Mejía, L., and Hoyos, C. D., 2019. Characterization of the atmospheric boundary layer in a narrow tropical valley using remote‐sensing and radiosonde observations and the WRF model: the Aburrá Valley case‐study. Quarterly Journal of the Royal Meteorological Society, 145(723), 2641-2665.
Hong, S. Y., Noh, Y., and Dudhia, J., 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly weather review, 134(9), 2318-2341.
Hu, X. M., Klein, P. M., and Xue, M., 2013. Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. Journal of Geophysical Research: Atmospheres, 118(18), 10-490.
INEA - Instituto Estadual do Ambiente, 2020. Relatório da qualidade do ar do Estado do Rio de Janeiro: ano base 2018 / Instituto Estadual do Ambiente, Rio de Janeiro.
Janić, Z. I., 2001. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model.
Kain, J. S., 2004. The Kain–Fritsch convective parameterization: an update. Journal of applied meteorology, 43(1), 170-181.
Li, X., Hu, X. M., Ma, Y., Wang, Y., Li, L., and Zhao, Z., 2019. Impact of planetary boundary layer structure on the formation and evolution of air-pollution episodes in Shenyang, Northeast China. Atmospheric Environment, 214, 116850.
Mendes, D., Dantas, G., da Silva, M. A., de Seixas, E. G., da Silva, C. M., and Arbilla, G., 2020. Impact of the petrochemical complex on the air quality of an urban area in the city of Rio de Janeiro, Brazil. Bulletin of environmental contamination and toxicology, 104, 438-443.
Miao, Y., Li, J., Miao, S., Che, H., Wang, Y., Zhang, X., Zhu, R., and Liu, S., 2019. Interaction between planetary boundary layer and PM 2.5 pollution in megacities in China: A review. Current Pollution Reports, 5, 261-271.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A., 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682.
Mohan, M., and Siddiqui, T. A., 1998. Analysis of various schemes for the estimation of atmospheric stability classification. Atmospheric environment, 32(21), 3775-3781.
Molina, L. T., 2021. Introductory lecture: air quality in megacities. Faraday discussions, 226, 9-52.
Moura, P. H., Santos, D. W. L., Moreno, A. M., Sobreira, P. G. P., da Silva, F. P., and Maia, L. F. P. G., 2020. Análise da qualidade do ar e fatores meteorológicos na cidade de Nova Iguaçu (Rio de Janeiro-Brasil) entre os anos de 2000 a 2016. Revista Brasileira de Meio Ambiente, 8(1).
Muramatsu, S., McGee, T. G., and Mori, K. (Eds.), 2021. Living in the Megacity: Towards Sustainable Urban Environments. Springer.
Peláez, L. M. G., Santos, J. M., de Almeida Albuquerque, T. T., Reis Jr, N. C., Andreão, W. L., and Fátima Andrade, M., 2020. Air quality status and trends over large cities in South America. Environmental Science & Policy, 114, 422-435.
Pimentel, L. C. G., Correia, E. B., Marton, E., Cataldi, M., and Nogueira, E., 2014. Influência dos parâmetros de configuração do modelo CALMET sobre a simulação da circulação atmosférica na região metropolitana do Rio de Janeiro. Revista Brasileira de Meteorologia, 29, 579-596.
Reboita, M. S., Gan, M. A., Rocha, R. P. D., and Ambrizzi, T., 2010. Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista brasileira de meteorologia, 25, 185-204.
Reboita, M. S., Ambrizzi, T., Silva, B. A., Pinheiro, R. F., and Da Rocha, R. P., 2019. The South Atlantic subtropical anticyclone: present and future climate. Frontiers in Earth Science, 7, 8.
Reuter, E. D. J., 2002. Estudo das Camadas Limites Planetária Marinha e Continental na Região do Centro de Lançamento de Alcântara. São José dos Campos: Instituto Nacional de Pesquisas Espaciais (INPE).
Sánchez, M. P., 2017. Investigação da camada limite urbana na região metropolitana de São Paulo. Universidade de São Paulo, 136 pp.
Santos, T. C., Carvalho, V. S. B., and Reboita, M. S., 2016. Avaliação da influência das condições meteorológicas em dias com altas concentrações de material particulado na Região Metropolitana do Rio de Janeiro. Engenharia Sanitária e Ambiental, 21, 307-313.
Santos, E. M., and Azevedo, D. D. A., 2021. Impact on ground-level ozone formation by emission characterization of volatile organic compounds from a flex-fuel light-duty vehicle fleet in a traffic tunnel in Rio de Janeiro, Brazil. Air Quality, Atmosphere & Health, 14, 259-270.
Schüch, D., de Freitas, E. D., Espinosa, S. I., Martins, L. D., Carvalho, V. S. B., Ramin, B. F., Silva, J. S., Martins, J. A., and Andrade, M. F, 2019. A two decades study on ozone variability and trend over the main urban areas of the São Paulo state, Brazil. Environmental Science and Pollution Research, 26, 31699-31716.
Silva Júnior, R. S. D., and Andrade, M. D. F., 2013. Validação de poluentes fotoquímicos e inclusão do inventário de emissões no modelo de qualidade do ar WRF/CHEM, para a região metropolitana de São Paulo. Revista Brasileira de Meteorologia, 28, 105-121.
Silveira, W. W. D., and Carvalho, V. S. B., 2021. Avaliação das Condições Meteorológicas Simuladas pelo Modelo WRF na Região Metropolitana do Rio de Janeiro em Dias Com Altas Concentrações de Poluentes. Revista Brasileira de Meteorologia, 36, 317-325.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Dudha, M. G., Huang, X., Wang, W, and Powers, Y., 2008. A description of the advanced research WRF Ver. 30. NCAR Technical Note. National Center for Atmospheric Research.
STULL, R. B, 1991. An Introduction to Boundary Layer Meteorology. [S.l.]: Kluwer Academic Publishers, 177 pp.
Trindade, H. A., Oliveira, A. E., Pfeiffer, W. C., Londres, H., and Costa-Ribeiro, C., 1980. Meteorological parameters and concentration of total suspended particulates in the urban area of Rio de Janeiro. Atmospheric Environment (1967), 14(8), 973-978.
Tsuruta, F., Carvalho, N. J. D., Silva, C. M. D., and Arbilla, G., 2018. Air quality indexes in the city of Rio de Janeiro during the 2016 Olympic and Paralympic Games. Journal of the Brazilian Chemical Society, 29, 1291-1303.
UN – United Nations, Department of Economic and Social Affairs, Population Division, 2018. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations.
UN - United Nations, 2022. The Sustainable Development Goals: Report 2022. UN.
UN HABITAT – United Nations Habitat, 2022. World Cities Report 2022: Envisaging the future of cities. United Nations Human Settlements Programme: Nairobi, Kenya, 41-44.
Wang, Z., Duan, A., and Wu, G., 2014. Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon. Science China Earth Sciences, 57, 1480-1493.
Wang, F., Chambers, S. D., Zhang, Z., Williams, A. G., Deng, X., Zhang, H., Lonati, G., Crawford, J., Griffiths, A. D., Ianniello, A., and Allegrini, I., 2016. Quantifying stability influences on air pollution in Lanzhou, China, using a radon-based “stability monitor”: Seasonality and extreme events. Atmospheric Environment, 145, 376-391.
WHO – World Health Organization, 2005. WHO global air quality guidelines: Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global Update 2005.
WHO – World Health Organization, 2021. WHO global air quality guidelines. Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Executive summary.
Xie, B., Fung, J. C., Chan, A., and Lau, A., 2012. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. Journal of Geophysical Research: Atmospheres, 117(D12).
Zhang, Z., Wang, F., Costabile, F., Allegrini, I., Liu, F., and Hong, W., 2012. Interpretation of ground-level ozone episodes with atmospheric stability index measurement. Environmental Science and Pollution Research, 19, 3421-3429.