Satellite-based analysis of climate oscillations: Implications for precipitation in an arid watershed in Mexico
Main Article Content
Abstract
Climate oscillations are known to have an important influence on weather patterns across the world. While the impact of El Niño Southern Oscillation (ENSO) has been well documented, there is a scarcity of studies examining the effects of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). This study uses satellite data to confirm that ENSO significantly influences precipitation in the Nazas-Aguanaval watershed from October to March, as evidenced by Spearman correlation coefficients. In contrast, the PDO influence is registered during specific months (January, March, November and December), while AMO impacts precipitations during April-June, November, and December. These results were corroborated using ANOVA, reinforcing the influence of ENSO and indicating a limited impact of PDO and AMO on this watershed. Finally, a linear model was developed to estimate monthly precipitation anomalies based on the phase of these three indices for the different sub-basins. Notably, monthly precipitation anomalies ranged between 140% and –78% in dry months. Our results demonstrate the influence of climate oscillations in precipitation in the Nazas-Aguanaval watershed and the usefulness of satellite data for conducting these analyses. Likewise, we set a starting point for investigating the implications of climate oscillation phases for water management and drought disaster prevention.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics
References
Adilah, AAGN & Hannani, H (2021) Comparison of Methods to Estimate Missing Rainfall Data for Short Term Period at UMP Gambang IOP Conference Series: Earth and Environmental Science, 682(1), 012027. https://doi.org/10.1088/1755-1315/682/1/012027
Bhattacharya, T & Chiang, JCH (2014) Spatial variability and mechanisms underlying El Niño-induced droughts in Mexico Climate Dynamics, 43(12), 3309–3326. https://doi.org/10.1007/s00382-014-2106-8
Blanca, MJ Alarcón, R & Arnau, J (2017) Non-normal data: Is ANOVA still a valid option? Psicothema, 29.4, 552–557. https://doi.org/10.7334/psicothema2016.383
Bridgman, HA Oliver, JE & Glantz, MH (2014) Oscillations and teleconnections In The global climate system: patterns, processes, and teleconnections. Cambridge University Press.
Capotondi, A Wittenberg, AT Newman, M Di Lorenzo, E Yu, J-Y Braconnot, P Cole, J Dewitte, B Giese, B Guilyardi, E Jin, F-F Karnauskas, K Kirtman, B Lee, T Schneider, N Xue, Y & Yeh, S-W (2015) Understanding ENSO Diversity Bulletin of the American Meteorological Society, 96(6), 921–938. https://doi.org/10.1175/BAMS-D-13-00117.1
Cleaveland, MK Stahle, DW Therrell, MD Villanueva-Diaz, J & Burns, BT (2003) Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico Climatic Change, 59(3), 369–388. https://doi.org/10.1023/A:1024835630188
De Winter, JCF Gosling, SD & Potter, J (2016) Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychological Methods, 21(3), 273–290. https://doi.org/10.1037/met0000079
Devi, U Shekhar, MS Singh, GP & Dash, SK (2020) Statistical Method of Forecasting of Seasonal Precipitation over the Northwest Himalayas: North Atlantic Oscillation as Precursor Pure and Applied Geophysics, 177(7), 3501–3511. https://doi.org/10.1007/s00024-019-02409-8
Dhurmea, KR Boojhawon, R & Rughooputh, SDDV (2019) A drought climatology for Mauritius using the standardized precipitation index Hydrological Sciences Journal, 64(2), 227–240. https://doi.org/10.1080/02626667.2019.1570209
Durán-Quesada, AM Sorí, R Ordoñez, P & Gimeno, L (2020) Climate Perspectives in the Intra–Americas Seas Atmosphere, 11(9), 959. https://doi.org/10.3390/atmos11090959
Esquivel-Arriaga, G Cerano-Paredes, J Sánchez-Cohen, I Velásquez-Valle, MA Flores-López, F & Bueno-Hurtado, P (2019) Temporal analysis of droughts (1922-2016) in the upper Nazas River Basin using SPI and its relationship with ENSO Tecnologia y Ciencias Del Agua, 10(5), 126–151. https://doi.org/10.24850/j-tyca-2019-05-05
Funk, C Peterson, P Landsfeld, M Pedreros, D Verdin, J Shukla, S Husak, G Rowland, J Harrison, L Hoell, A & Michaelsen, J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66
Guevara-Polo, DE & Mijares-Fajardo, R (2021) El Niño Oscilación del Sur (ENSO) y sus efectos sobre la precipitación en México Entorno UDLAP, 15, 26–35.
Gutierrez-Garcia, G Leavitt, SW Trouet, V & Carriquiry, JD (2020) Tree Ring ‐ Based Historic Hydroclimatic Variability of the Baja California Peninsula Journal of Geophyisical Research, 1–16. https://doi.org/10.1029/2020JD032675
Gutiérrez-Garcia, G Leavitt, SW Trouet, V & Carriquiry, JD (2020) Tree ring‐based historic hydroclimatic variability of the Baja California Peninsula Journal of Geophysical Research: Atmospheres, 125(24), e2020JD032675. https://doi.org/10.1029/2020JD032675
Hernández-Romero, P Patiño-Gómez, C Martínez-Austria, PF & Corona-Vásquez, B (2022) Rainfall/runoff hydrological modeling using satellite precipitation information Water Practice and Technology, 17(5), 1082–1098. https://doi.org/10.2166/wpt.2022.048
Jung, J & Kim, HS (2022) Predicting temperature and precipitation during the flood season based on teleconnection Geoscience Letters, 9(1), 4. https://doi.org/10.1186/s40562-022-00212-3
Kleijnen, JPC (2015) Design and Analysis of Simulation Experiments (Vol. 230) Springer International Publishing. https://doi.org/10.1007/978-3-319-18087-8
Kusunoki, S Nakaegawa, T Pinzón, R Sanchez-Galan, JE & Fábrega, JR (2019) Future precipitation changes over Panama projected with the atmospheric global model MRI-AGCM3.2 Climate Dynamics, 53(7–8), 5019–5034. https://doi.org/10.1007/s00382-019-04842-w
Le, T & Bae, D (2022) Causal Impacts of El Niño–Southern Oscillation on Global Soil Moisture Over the Period 2015–2100 Earth’s Future, 10(3). https://doi.org/10.1029/2021EF002522
Levizzani, V & Cattani, E (2019) Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate Remote Sensing, 11(19), 2301. https://doi.org/10.3390/rs11192301
Lin, H Lee, C Peng, S Hung, M Liu, P & Mayfield, AB (2018) The effects of El Niño‐Southern Oscillation events on intertidal seagrass beds over a long‐term timescale Global Change Biology, 24(10), 1–15. https://doi.org/10.1111/gcb.14404
Magaña, VO Vázquez, JL Pérez, JL & Pérez, JB (2003) Impact of El Niño on precipitation in Mexico Geofísica Internacional, 42(3), 313–330. https://doi.org/10.22201/igeof.00167169p.2003.42.3.949
Martínez-Austria, PF (2020) Climate change and water resources in Mexico In Water resources of Mexico Springer.
Méndez, M & Magaña, V (2010) Regional Aspects of Prolonged Meteorological Droughts over Mexico and Central America Journal of Climate, 23(5), 1175–1188. https://doi.org/10.1175/2009JCLI3080.1
Mijares-Fajardo, R Lobato-Sánchez, R Patiño-Gómez, C & Guevara-Polo, DE (2023) Atlantic and Pacific sea surface temperature correlations with precipitation over northern Mexico Atmósfera. https://doi.org/10.20937/ATM.53257
Montero-Martínez, MJ Pita-Díaz, O & Andrade-Velázquez, M (2022) Potential Influence of the Atlantic Multidecadal Oscillation in the Recent Climate of a Small Basin in Central Mexico Atmosphere, 13(2), 339. https://doi.org/10.3390/atmos13020339
Montero-Martínez, MJ Santana-Sepúlveda, JS Pérez-Ortiz, NI Pita-Díaz, Ó & Castillo-Liñan, S (2018) Comparing climate change indices between a northern (arid) and a southern (humid) basin in Mexico during the last decades Advances in Science and Research, 15, 231–237. https://doi.org/10.5194/asr-15-231-2018
Muluken, LE (2020) Techniques of Filling Missing Values of Daily and Monthly Rain Fall Data: A Review SF Journal of Environmental and Earth Science, 3, 1036.
Munroe, R Crawford, T & Curtis, S (2014) Geospatial Analysis of Space–Time Patterning of ENSO Forced Daily Precipitation Distributions in the Gulf of Mexico The Professional Geographer, 66(1), 91–101. https://doi.org/10.1080/00330124.2013.765291
Nigam, S & Baxter, S (2015) Teleconnections In Encyclopedia of Atmospheric Sciences (pp. 90–109) Elsevier. https://doi.org/10.1016/B978-0-12-382225-3.00400-X
Oñate-Valdivieso, F Uchuari, V & Oñate-Paladines, A (2020) Large-Scale Climate Variability Patterns and Drought: A Case of Study in South – America Water Resources Management, 34(6), 2061–2079. https://doi.org/10.1007/s11269-020-02549-w
Park, J Byrne, R & Böhnel, H (2017) The combined influence of Pacific decadal oscillation and Atlantic multidecadal oscillation on central Mexico since the early 1600s Earth and Planetary Science Letters, 464, 1–9. https://doi.org/10.1016/j.epsl.2017.02.013
Pavia, EG Graef, F & Reyes, J (2006) PDO–ENSO Effects in the Climate of Mexico Journal of Climate, 19(24), 6433–6438. https://doi.org/10.1175/JCLI4045.1
Rehman, S Sajjad, H Masroor, M Rahaman, MH Roshani Ahmed, R & Sahana, M (2022) Assessment of evidence-based climate variability in Bhagirathi sub-basin of India: a geostatistical analysis Acta Geophysica, 70(1), 445–463. https://doi.org/10.1007/s11600-022-00726-6
Rojas‐Murillo, K Lupo, AR Garcia, M Gilles, J Korner, A & Rivera, MA (2022) ENSO and PDO related interannual variability in the north and east-central part of the Bolivian Altiplano in South America International Journal of Climatology, 42(4), 2413–2439. https://doi.org/10.1002/joc.7374
Sangha, L Lamba, J & Kumar, H (2020) Effect of ENSO-based upstream water withdrawals for irrigation on downstream water withdrawals Hydrology Research, 51(4), 602–620. https://doi.org/10.2166/nh.2020.156
Santillán, NS López, RG Zepeda, RV & Trejo, RS (2012) Climate change in NE Mexico: influence of the North Atlantic Oscillation Investigaciones Geográficas, 78, 7–18.
Smith, DF Goldsmith, ST Harmon, BA Espinosa, JA & Harmon, RS (2020) Physical controls and ENSO event influence on weathering in the Panama Canal Watershed Scientific Reports, 10(1), 10861. https://doi.org/10.1038/s41598-020-67797-7
Van Viet, L (2021) Development of a new ENSO index to assess the effects of ENSO on temperature over southern Vietnam Theoretical and Applied Climatology, 144(3–4), 1119–1129. https://doi.org/10.1007/s00704-021-03591-3
Vega-Camarena, JP Brito-Castillo, L Pineda-Martínez, LF & Farfán, LM (2023) ENSO Impact on Summer Precipitation and Moisture Fluxes over the Mexican Altiplano Journal of Marine Science and Engineering, 11(5), 1083. https://doi.org/10.3390/jmse11051083
Villanueva-Díaz, J Estrada-Ávalos, J Martínez-Sifuentes, AR Correa-Díaz, A Meko, DM Castruita-Esparza, LU & Cerano-Paredes, J (2022) Historic Variability of the Water Inflow to the Lazaro Cardenas Dam and Water Allocation in the Irrigation District 017, Comarca Lagunera, Mexico Forests, 13(12), 2057. https://doi.org/10.3390/f13122057
Villanueva-Díaz, J Martínez-Sifuentes, AR Reyes-Camarillo, FDR & Estrada-Ávalos, J (2020) Reconstrucción de precipitación y temperatura con anillos de crecimiento anual del ciprés Taxodium mucronatum (Taxodiaceae) en Coahuila, México Revista de Biología Tropical, 69(1), 302–316. https://doi.org/10.15517/rbt.v69i1.43249
Wills, RC Schneider, T Wallace, JM Battisti, DS & Hartmann, DL (2018) Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures Geophysical Research Letters, 45(5), 2487–2496. https://doi.org/10.1002/2017GL076327
Wion, AP Pearse, IS Rodman, KC Veblen, TT & Redmond, MD (2021) The effects of ENSO and the North American monsoon on mast seeding in two Rocky Mountain conifer species Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1839), 20200378. https://doi.org/10.1098/rstb.2020.0378
Yin, Z-Y Maytubby, A & Liu, X (2022) Variation Patterns of the ENSO’s Effects on Dust Activity in North Africa, Arabian Peninsula, and Central Asia of the Dust Belt Climate, 10(10), 150. https://doi.org/10.3390/cli10100150
Zermeño Díaz, DM & Mendoza, LG (2023) The influence of ENSO during spring over northwestern Mexico International Journal of Climatology, joc.8212. https://doi.org/10.1002/joc.8212