Orinoco revisited: Comprehensive analysis of the Orinoco River basin present and future hydroclimate

Main Article Content

Alejandro Builes-Jaramillo
Hernán D. Salas
Juliana Valencia
Carolina Florian

Abstract

The Orinoco River basin, ranked as South America’s third-largest catchment, is pivotal in contributing to the Atlantic Ocean’s water volume. This study provides a comprehensive update on the basin’s surface water balance, examining trends using gridded precipitation and total evaporation datasets. We also explore projected changes in precipitation until the end of the 21st century, focusing on the RCP8.5 climate change scenario. To achieve this, we utilize data from regional climate models designed by the CORDEX-CORE experiment, selecting an ensemble that excels in performance across South America and Central America. We estimate the accuracy of reference datasets in capturing water balance dynamics. We identify increasing trends in precipitation and total evaporation across most of the basin, enhancing our understanding of its long-term hydrological balance. Notably, the Andean and Guianese sectors of the basin contribute equally to half of the mean surface runoff, although the latter encompasses only 30% of the total area. This underscores the key role of the Guianese shield sub-basins. In regional climate modeling, despite some underestimation, the model runs for the CORDEX South America domain simulate effectively the precipitation across the basin. Regarding climate scenarios, our analysis using the RCP8.5 scenario projects an average annual precipitation reduction of around 45% for the entire basin. These findings emphasize the urgency of adopting measures to mitigate potential adverse effects on the Orinoco River basin’s hydrological sustainability in response to evolving climate patterns.

Downloads

Download data is not yet available.

Article Details

Sharing on:

PLUMX metrics

References

Accadia, C., Mariani, S., Casaioli, M., Lavagnini, A., & Speranza, A. (2003). Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Weather and forecasting, 18(5), 918-932.

Arias, P. A., Ortega, G., Villegas, L. D., & Martínez, J. A. (2021). Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Revista Facultad de Ingenieria, 100, 75–96. https://doi.org/10.17533/udea.redin.20210525

Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart, J., Espinoza, J. C., & Pattnayak, K. C. (2018). Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4(9). https://doi.org/10.1126/sciadv.aat8785

Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., & Kristjánsson, J. E. (2013). The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development, 6(3), 687–720. https://doi.org/10.5194/gmd-6-687-2013

Bovolo, C. I., Wagner, T., Parkin, G., Hein-Griggs, D., Pereira, R., & Jones, R. (2018). The Guiana Shield rainforests-overlooked guardians of South American climate. Environmental Research Letters, 13(7). https://doi.org/10.1088/1748-9326/aacf60

Brêda, J. P. L. F., de Paiva, R. C. D., Collischon, W., Bravo, J. M., Siqueira, V. A., & Steinke, E. B. (2020). Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Climatic Change, 159(4), 503–522. https://doi.org/10.1007/s10584-020-02667-9

Builes-Jaramillo, A., & Pántano, V. (2021). Comparison of spatial and temporal performance of two Regional Climate Models in the Amazon and La Plata river basins. Atmospheric Research, 250(November 2020). https://doi.org/10.1016/j.atmosres.2020.105413

Builes-Jaramillo, A., Yepes, J., & Salas, H. D. (2022). The Orinoco Low-Level Jet and Its Association with the Hydroclimatology of Northern South America. Journal of Hydrometeorology, 23(2), 209–223. https://doi.org/10.1175/JHM-D-21-0073.1

Builes‐Jaramillo, A., & Poveda, G. (2018). Conjoint Analysis of Surface and Atmospheric Water Balances in the Andes‐Amazon System. Water Resources Research, 54(5), 3472–3489. https://doi.org/10.1029/2017WR021338

Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1–2), 53–72. https://doi.org/10.1016/j.earscirev.2006.06.002

Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J., Sentman, L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., & Zadeh, N. (2012). GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. Journal of Climate, 25(19), 6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1

Frappart, F., Papa, F., Santos da Silva, J., Ramillien, G., Prigent, C., Seyler, F., & Calmant, S. (2012). Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environmental Research Letters, 7(4), 044010. https://doi.org/10.1088/1748-9326/7/4/044010

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., … Stevens, B. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5(3), 572–597. https://doi.org/10.1002/jame.20038

Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U., Cozzini, S., Güttler, I., O’Brien, T. A., Tawfik, A. B., Shalaby, A., Zakey, A. S., Steiner, A. L., Stordal, F., … Brankovic, C. (2012). RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Research, 52(1), 7–29. https://doi.org/10.3354/cr01018

Giorgi, F., Coppola, E., Teichmann, C., & Jacob, D. (2021). Editorial for the CORDEX-CORE Experiment I Special Issue. Climate Dynamics, 57(5–6), 1265–1268. https://doi.org/10.1007/s00382-021-05902-w

Gloor, M., Brienen, R. J. W., Galbraith, D., Feldpausch, T. R., Schöngart, J., Guyot, J.-L., Espinoza, J. C., Lloyd, J., & Phillips, O. L. (2013). Intensification of the Amazon hydrological cycle over the last two decades. Geophysical Research Letters, 40(9), 1729–1733. https://doi.org/10.1002/grl.50377

Hagedorn, R., Doblas-Reyes, F. J., & Palmer, T. N. (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting - I. Basic concept. In Tellus, Series A: Dynamic Meteorology and Oceanography (Vol. 57, Issue 3, pp. 219–233). https://doi.org/10.1111/j.1600-0870.2005.00103.x

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Jiménez-Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. In Journal of Geophysical Research: Atmospheres (Vol. 124, Issue 20, pp. 10696–10711). https://doi.org/10.1029/2019JD030934

Kendall, M. (1975). Rank Correlation Methods (C. Griffin (ed.); 4th Editio).

Labar, R. J., Douglas, M., Murillo, J., & Mejia, J. F. (2005). The Llanos Low-Level Jet and its Association with Venezuelan Convective Precipitation.

López, R., Del Castillo, C. E., Miller, R. L., Salisbury, J., & Wisser, D. (2012). Examining organic carbon transport by the Orinoco River using SeaWiFS imagery. Journal of Geophysical Research: Biogeosciences, 117(3), 1–13. https://doi.org/10.1029/2012JG001986

Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., & Verhoest, N. E. C. (2017). GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5), 1903–1925. https://doi.org/10.5194/gmd-10-1903-2017

Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O’Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., … Wiltshire, A. (2011). The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 4(3), 723–757. https://doi.org/10.5194/gmd-4-723-2011

Martinez, J. A., Arias, P. A., Junquas, C., Espinoza, J. C., Condom, T., Dominguez, F., & Morales, J. S. (2022). The Orinoco low-level jet and the cross-equatorial moisture transport over tropical South America: Lessons from seasonal WRF simulations. Journal of Geophysical Research: Atmospheres, 127, e2021JD035603. https://doi. org/10.1029/2021JD035603

Meade, R. H. (2008). Transcontinental Moving and Storage: The Orinoco and Amazon Rivers Transfer the Andes to the Atlantic. Large Rivers: Geomorphology and Management, 45–63. https://doi.org/10.1002/9780470723722.ch4

Mora, A., Moreau, C., Moquet, J. S., Gallay, M., Mahlknecht, J., & Laraque, A. (2020). Hydrological control, fractionation, and fluxes of dissolved rare earth elements in the lower Orinoco River, Venezuela. Applied Geochemistry, 112. https://doi.org/10.1016/j.apgeochem.2019.104462

Peixoto, J., & Oort, A. (1993). Physics of Climate (Springer-Verlag (ed.)).

Pietikäinen, J. P., Markkanen, T., Sieck, K., Jacob, D., Korhonen, J., Räisänen, P., Gao, Y., Ahola, J., Korhonen, H., Laaksonen, A., & Kaurola, J. (2018). The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes. Geoscientific Model Development, 11(4), 1321–1342. https://doi.org/10.5194/gmd-11-1321-2018

Remedio, A. R., Teichmann, C., Buntemeyer, L., Sieck, K., Weber, T., Rechid, D., Hoffmann, P., Nam, C., Kotova, L., & Jacob, D. (2019). Evaluation of New CORDEX Simulations Using an Updated Köppen–Trewartha Climate Classification. Atmosphere, 10(11), 726. https://doi.org/10.3390/atmos10110726

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., & Rudolf, B. (2014). GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115(1–2), 15–40. https://doi.org/10.1007/s00704-013-0860-x

Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Silva León, G. (2005). La cuenca del río Orinoco: Visión hidrográfica y balance hídrico. Revista Geografica Venezolana, 46(1), 75–108.

Solman, S. A., & Blázquez, J. (2019). Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations. Climate Dynamics, 53(3–4), 1547–1565. https://doi.org/10.1007/s00382-019-04689-1

Sörensson, A. A., & Ruscica, R. C. (2018). Intercomparison and Uncertainty Assessment of Nine Evapotranspiration Estimates Over South America. Water Resources Research, 54(4), 2891–2908. https://doi.org/10.1002/2017WR021682

Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456–457, 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052

Urrea, V., Ochoa, A., & Mesa, O. (2019). Seasonality of Rainfall in Colombia. Water Resources Research, 55(5), 4149–4162. https://doi.org/10.1029/2018WR023316

Viloria, J. A., Olivares, B. O., García, P., Paredes-Trejo, F., & Rosales, A. (2023). Mapping Projected Variations of Temperature and Precipitation Due to Climate Change in Venezuela. Hydrology, 10(4). https://doi.org/10.3390/hydrology10040096

Wang, H., & Fu, R. (2002). Cross-equatorial flow and seasonal cycle of precipitation over South America. Journal of Climate, 15(13), 1591–1608. https://doi.org/10.1175/1520-0442(2002)015<1591:CEFASC>2.0.CO;2

Warne, A. G., Meade, R. H., White, W. A., Guevara, E. H., Gibeaut, J., Smyth, R. C., Aslan, A., & Tremblay, T. (2002). Regional controls on geomorphology, hydrology, and ecosystem integrity in the Orinoco Delta, Venezuela. Geomorphology, 44(3–4), 273–307. https://doi.org/10.1016/S0169-555X(01)00179-9

Watterson, I. G., Bathols, J., & Heady, C. (2014). What influences the skill of climate models over the continents? Bulletin of the American Meteorological Society, 95(5), 689–700. https://doi.org/10.1175/BAMS-D-12-00136.1