Synoptic climatology associated with heavy rainfall events in the Itajaí Valley region, Brazil
Main Article Content
Abstract
This study presents a synoptic climatology of heavy rainfall events (HRE) in the Itajaí Valley region (IVr) in the eastern Santa Catarina (SC) state between 2000 and 2022. A total of 195 HRE were identified, corresponding to accumulations greater than 27 mm per day. The mean synoptic pattern associated with HRE showed the presence of a cold front over the study region and a low-pressure system over northeastern Argentina and Paraguay that promoted warm advection over much of the SC state. This pattern was also observed at the 850 hPa level, where a cyclonic circulation centered over Paraguay two days before the HRE (day –2) intensified the moisture transport from the Amazon region over SC. On day 0, a trough in the middle and upper troposphere was observed over Argentina, Uruguay, and parts of southern Brazil, showing a typical mid-latitude dynamic system that reflects the cold front observed at the surface. The synoptic classification identified four main surface synoptic patterns associated with HRE in the IVr. The most frequent pattern was related to the presence of the South Atlantic Subtropical Anticyclone (SASA) with blocking characteristics. Two patterns were related to a typical cold front, and the last was associated with a cyclogenetic process. No correlation was found between the sea surface temperature (SST) and the occurrence of HRE in the IVr; however, the SST anomaly gradient observed around 35º S suggested that cold fronts may be anchoring over the region of anomalously cold waters over the coast of the south of Brazil.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics
References
Andrade KM. 2005. Climatologia e comportamento dos sistemas frontais sobre a América do Sul. Master´s Tesis, Instituto Nacional de Pesquisas Espaciais (INPE).
Avila MRR, Mattedi MA. 2017. Disaster and territory: the production of vulnerability to disasters in the city of Blumenau/SC. Revista Brasilera de Gestão Urbana 9: 187-202. https://doi.org/10.1590/2175-3369.009.002.AO03
Dias MAFS 2009. As chuvas de novembro de 2008 em Santa Catarina: um estudo de caso visando à melhoria do monitoramento e da previsão de eventos extremos. Available at http://urlib.net/sid.inpe.br/mtc-m19@80/2009/11.05.11.33
Escobar GCJ, Seluchi ME, Andrade K. 2016. Classificação sinótica de frentes frias associadas a chuvas extremas no leste de Santa Catarina (SC). Revista Brasileira de Meteorologia 31: 649-661. https://doi.org/10.1590/0102-7786312314b20150156
Cardoso C. de Souza. 2017. Abrangência e persistência de eventos extremos de precipitação no sul do Brasil: El Ninõ Oscilação Sul e padrões atmosféricos. Doctoral Thesis, Universidade Federal de Santa Catarina.
Cattell R. 1978. The Scientific use of factor analysis in behavioral and life sciences. New York and London, Plenum Press.
Compagnucci R, Salles MA. 1997. Surface Pressure Patterns during the year over Southern South America. International Journal of Climatology 17: 635-653. https://doi.org/10.1002/(SICI)1097-0088(199705)17:6<635::AID-JOC81>3.0.CO;2-B
Compagnucci R, Araneo D, Canziani P. 2001. Principal sequence pattern analysis: A new approach to classifying the evolution of atmospheric systems. International Journal of Climatology 21: 197-217. https://doi.org/10.1002/joc.601
Escobar GCJ, Compagnucci RH, Bischoff SA. 2004. Sequence patterns of 1000 hPa and 500 hPa geopotential height fields associated with cold surges in Buenos Aires. Atmósfera 12: 69-89.
Escobar GCJ, Seluchi ME. 2012. Classificação sinótica dos campos de pressão atmosférica na América do Sul e sua relação com as Baixas do Chaco e do Noroeste Argentino. Revista Brasileira de Meteorologia 27: 365-375. https://doi.org/10.1590/S0102-77862012000300011
Escobar GCJ, Seluchi ME, Andrade K. 2016. Classificação sinótica de frentes frias associadas a chuvas extremas no leste de Santa Catarina (SC). Revista Brasileira de Meteorologia 31: 649-661. https://dx.doi.org/10.1590/0102-7786312314b20150156
Escobar GCJ, Reboita MS, Souza A. 2019. Climatology of surface baroclinic zones in the coast of Brazil. Atmósfera 32: 129-141. https://dx.doi.org/10.20937/ATM.2019.32.02.04
Escobar GCJ. 2019. Classificação sinótica durante a estação chuvosa do Brasil. Revista Anuário do Instituto de Geociências (UFRJ) 42: 421-436. http://dx.doi.org/10.11137/2019_2_421_436
Escobar GCJ, Vaz JCM, Reboita MS. 2019. Surface atmospheric circulation associated with “Friagens” in Central-West Brazil. Anuário do Instituto de Geociências (UFRJ) 42: 241-254. https://doi.org/10.11137/2019_1_241_254
Escobar GCJ, Reboita MS. 2022. Relationship between daily atmospheric circulation patterns and South Atlantic Convergence Zone (SACZ) events. Atmósfera 35: 1–25. https://dx.doi.org/10.20937/ATM.52936
Escobar GCJ, De Almeida Marques AC, Dereczynski CP. 2022. Synoptic patterns of South Atlantic Convergence Zone episodes associated with heavy rainfall events in the city of Rio de Janeiro, Brazil. Atmósfera 35: 287–305. https://doi.org/10.20937/ATM.52942
de Faria LF, Reboita MS, Mattos EV, Carvalho VSB, Ribeiro JGM, Capucin BC, Drumond A, dos Santos APP. 2023. Synoptic and Mesoscale Analysis of a Severe Weather Event in Southern Brazil at the End of June 2020. Atmosphere 14: 486. https://doi.org/10.3390/atmos14030486
Foss M, Chou SC, Seluchi ME. 2017. Interaction of cold fronts with the Brazilian plateau: A climatological analysis. International Journal of Climatology 37: 3644-3659. https://doi.org/10.1002/joc.4945
Moreira GC, Roseghini WF, Aschidamini IM. 2011. Environmental management planning - considerations about the events occurring in Santa Catarina - Brazil in November 2008. Procedia Social and Behavioral Sciences 19: 487-493. https://doi.org/10.1016/j.sbspro.2011.05.159
Harman H. 1976. Modern Factor Analysis. The University of Chicago Press, Chicago. Illinois.
Herrmann MLP. 2014. Atlas de Desastres Naturais do Estado de Santa Catarina: período de 1980 a 2010. 2ª ed. Instituto Historico e Geografico de Santa Catarina Florianópolis. Cadernos Geográficos.
Hoskins BJ, Hodges KI. 2005. New perspectives on the Southern Hemisphere storm tracks. Journal of Climate 18: 4108–4129. https://doi.org/10.1175/JCLI3570.1
Huth R, Beck C, Philipp A, Demuzere M, Ustrnul Z, Cahynová M, Kyselý J, Tveito OT. 2008. Classifications of atmospheric circulation patterns. Recent advances and applications. Trends and Directions in Climate Research: Annals of the New York Academy of Sciences 1146: 105-152. https://doi.org/10.1196/annals.1446.019
Lenters JD, Cook KH. 1997. Summertime precipitation variability over South America: Role of the large-scale circulation. Monthly Weather Review 127: 409-431. https://doi.org/10.1175/1520-0493(1999)127%3C0409:SPVOSA%3E2.0.CO;2
Marengo JA, Liebmann B, Grimm AM, Misra V, Dias PLS, Calvalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-Paegle J, Zipser E, Seth A, Alves LM. 2012. Recent developments on the South American monsoon system Review. International Journal of Climatology 32: 1-21. https://doi.org/10.1002/joc.2254
May W. 2004. Variability and extremes of daily rainfall during the Indian summer monsoon in the period 1901-1989. Global and Planetary Change 44: 83-105. http://doi.org/10.1016/j.gloplacha.2004.06.007
McTaggart-Cowan RL, Bosart F, Davis CA, Atallah EH, Gyakum JR, Emanuel KA, 2006. Analysis of Hurricane Catarina (2004). Monthly Weather Review 134: 3029–3053. https://doi.org/10.1175/MWR3330.1
Gozzo LF, Rocha RP, Reboita MS, Sugahara S. 2014. Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study. Journal of Climate 27: 8543–8562. https://doi.org/10.1175/JCLI-D-14-00149.1
Green PE, Carroll JD. 1978. Analyzing Multivariate Data. The Dryden Press. Illinois.
Murara P, Acquaotta F, Garzena D, Fratianni S. 2018. Daily precipitation extremes and their variations in the Itajaí River Basin, Brazil. Meteorol Atmos Phys 131: 1145–1156. https://doi.org/10.1007/s00703-018-0627-0
Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W. 2002. An improved in situ and satellite SST analysis for climate. Journal of Climate 15: 1609-1625. https://doi.org/10.1175/1520-0442(2002)015<1609: AIISAS>2.0.CO;2
Richman M. 1986. Rotation of Principal Components. Journal of Climatology 6: 293-335.
Richman M, Angel J, Gong X. 1992. Determination of Dimensionality in Eingenanalysis. In: Proceedings of the 5th International meeting on statistical climatology, Toronto, Canadá.
Rozante JR, Moreira DS, Gonçalves, LGG, Vila DA. 2010. Combining TRMM and surface observations of precipitation: technique and validation over South America. Weather and forecasting, 25, 885-894. https://doi.org/10.1175/2010WAF2222325.1
Saha S, Moorthi S, Pan H, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y, Chuang H, Juang HH, Sela J, Iredell M, Treadon R, Kleist D, Delst PV, Keyser D, Derber J, Ek, M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M. 2010. The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society 91: 1015-1057.
https://dx.doi.org/10.1175/2010BAMS3001.1
Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y, Chuang H, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E. 2014. The NCEP Cimate Forecast System Version 2. Journal of Climate 27: 2185-2208. https://dx.doi.org/10.1175/JCLI-D-12-00823.1
Sanders F, Gyakum JR. 1980. Synoptic-dynamic climatology of the “Bomb”. Monthly Weather Review 108: 1589–1606.
https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2
Seluchi ME, Cássia B, Andrade K. 2016. Características das Frentes Frias Causadoras de Chuvas Intensas no Leste de Santa Catarina. Revista Brasileira de Meteorologia 32: 25-37. http://dx.doi.org/10.1590/0102-778632120150095
Simmonds I, Keay K. 2000. Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. Journal of Climate 13: 873–885. https://doi.org/10.1175/ 1520-0442(2000)013,0873: MSHECB.2.0.CO;2
Taljaard JJ. 1972. Synoptic Meteorology of the Southern Hemisphere. In: Meteorology of the Southern Hemisphere. Meteorological Monographs 35. American Meteorological Society, 139–213.
Teixeira MD, Satyamurty P. 2007. Dynamical and Synoptic Characteristics of Heavy Rainfall Episodes in Southern Brazil. Monthly Weather Review 135: 598-617. https://doi.org/10.1175/MWR3302.1