Why did numerical weather forecasting systems fail to predict the Hurricane Otis’s development?
Main Article Content
Abstract
Hurricane Otis (HO) occurred in the eastern tropical Pacific (ETP), intensifying rapidly and unexpectedly, making landfall near Acapulco at 06:25 UTC on October 25, 2023 as a category five hurricane. Official and unofficial national weather forecasts (NWF) failed to predict HO’s development, trajectory, and intensification. To analyze the reasons for the failure of the NWF, we conducted two experiments using the Weather Research and Forecasting (WRF) model, with Global Forecast System (GFS) and fifth-generation ECMWF atmospheric reanalysis (ERA5) data as initial condition (IC). Our results showed that some fields in the GFS data, such as relative humidity, convective available potential energy, and even sea surface temperature, were more favorable for the development and intensification of the disturbance compared to ERA5. However, the three-dimensional structure of the wind field in the ETP in GFS did not contribute to the initial development of HO. Additionally, we explored the WRF’s sensitivity to different model configurations to simulate the trajectory and intensity of the hurricane using a coupled ocean-atmosphere system composed of WRF and a three-dimensional upper-ocean circulation model based on Price-Weller-Pinkel. Our numerical experiments involve modifications in the IC, cumulus parameterizations (CP), roughness coefficients, spatial resolutions, different time steps, and an idealized coupled model. The sensitivity test reveals the significance of the CP scheme, where the Kain-Fritsch was the only one that helped simulate the HO properly, altogether with increased spatial resolution. Furthermore, ocean-atmosphere coupling improves the prediction of the landfall time and location of the HO. However, no experiment captured the intensity or rapid intensification of HO.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics
References
Aquino-Martínez, Lourdes P., Ortega Guerrero, Beatriz, Quintanar, Arturo I., Ochoa-Moya, Carlos A., & Barrón-Fernández, Ricardo. (2023). High-Performance Computing with the Weather Research and Forecasting System Model: A Case Study under Stable Conditions over Mexico Basin. Computación y Sistemas, 27(3), 627-641. Epub 17 de noviembre de 2023. https://doi.org/10.13053/cys-27-3-4035
Arakawa, A., 2004: The Cumulus Parameterization Problem: Past, Present, and Future. J. Climate, 17, 2493–2525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.
Banzon, V., Smith, T. M., Chin, T. M., Liu, C., and Hankins, W. 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies, Earth Syst. Sci. Data, 8, 165–176, https://doi.org/10.5194/essd-8-165-2016.
Beljaars, A.C.M. (1995), The parametrization of surface fluxes in large-scale models under free convection. Q.J.R. Meteorol. Soc., 121: 255-270. https://doi.org/10.1002/qj.49712152203
Bi-Yun SUN & Xun-Qiang BI (2019) Validation for a tropical belt version of WRF: sensitivity tests on radiation and cumulus convection parameterizations, Atmospheric and Oceanic Science Letters, 12:3, 192-200, DOI: 10.1080/16742834.2019.1590118
Biswas, M. K., L. Bernardet, and J. Dudhia (2014), Sensitivity of hurricane forecasts to cumulus parameterizations in the HWRF model, Geophys. Res. Lett., 41, 9113–9119, doi:10.1002/2014GL062071.
Brutsaert, W. (1975), A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level, Water Resour. Res., 11(4), 543–550, doi:10.1029/WR011i004p00543.
Bruyère, C. L., G. J. Holland, and E. Towler, 2012: Investigating the Use of a Genesis Potential Index for Tropical Cyclones in the North Atlantic Basin. J. Climate, 25, 8611–8626, https://doi.org/10.1175/JCLI-D-11-00619.1.
Chan, J. C. L., Duan, Y., & Shay, L. K. (2001). Tropical Cyclone Intensity Change from a Simple Ocean–Atmosphere Coupled Model. Journal of the Atmospheric Sciences, 58(2), 154-172. https://doi.org/10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2
Chandrasekar, R., Balaji, C. (2012). Sensitivity of tropical cyclone Jal simulations to physics parameterizations. J Earth Syst Sci 121, 923–946 (2012). https://doi.org/10.1007/s12040-012-0212-8
Charnock, H. (1955), Wind stress on a water surface. Q.J.R. Meteorol. Soc., 81: 639-640. https://doi.org/10.1002/qj.49708135027
Chelsea L. Parker, Amanda H. Lynch, Priscilla A. Mooney, 2017, Factors affecting the simulated trajectory and intensification of Tropical Cyclone Yasi (2011), Atmospheric Research, Volume 194, Pages 27-42, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2017.04.002.
Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional Wind–Wave Coupling in Fully Coupled Atmosphere–Wave–Ocean Models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 3198–3215, https://doi.org/10.1175/JAS-D-12-0157.1.
Copernicus Climate Change Service, Climate Data Store, (2021): ORAS5 global ocean reanalysis monthly data from 1958 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.67e8eeb7
Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does Increased Horizontal Resolution Improve Hurricane Wind Forecasts?. Wea. Forecasting, 25, 1826–1841, https://doi.org/10.1175/2010WAF2222423.1.
Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman (2004), On the limiting aerodynamic roughness of the ocean in very strong winds, Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.
Dorman, C. E., Carniel, S., Cavaleri, L., Sclavo, M., Chiggiato, J., Doyle, J., ... & Signell, R. P. (2007). Oceanography and Marine Meteorology of the Adriatic Sea-C03SO3-February 2003 marine atmospheric conditions and the bora over the northern Adriatic. Journal of Geophysical Research-Part C-Oceans, 112(3). DOI 10.1029/2005JC003134
Dudhia, J., 1989: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci., 46, 3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Emanuel, K. A., (1995). The Behavior of a Simple Hurricane Model Using a Convective Scheme Based on Subcloud-Layer Entropy Equilibrium. J. Atmos. Sci., 52, 3960–3968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.
Emanuel, K., (2003): A Similarity Hypothesis for Air–Sea Exchange at Extreme Wind Speeds. J. Atmos. Sci., 60, 1420–1428, https://doi.org/10.1175/1520-0469(2003)060<1420:ASHFAE>2.0.CO;2
Fudeyasu, H., Ito, K., & Miyamoto, Y. (2018). Characteristics of Tropical Cyclone Rapid Intensification over the Western North Pacific. Journal of Climate, 31(21), 8917-8930. https://doi.org/10.1175/JCLI-D-17-0653.1
Gbode, I.E., Dudhia, J., Ogunjobi, K.O. et al. (2019). Sensitivity of different physics schemes in the WRF model during a West African monsoon regime. Theor Appl Climatol 136, 733–751. https://doi.org/10.1007/s00704-018-2538-x
Glotfelty, T., Alapaty, K., He, J., Hawbecker, P., Song, X., & Zhang, G. (2019). The Weather Research and Forecasting Model with Aerosol–Cloud Interactions (WRF-ACI): Development, Evaluation, and Initial Application. Monthly Weather Review, 147(5), 1491-1511. https://doi.org/10.1175/MWR-D-18-0267.1
Green, B. W., & Zhang, F. (2013). Impacts of Air–Sea Flux Parameterizations on the Intensity and Structure of Tropical Cyclones. Monthly Weather Review, 141(7), 2308-2324. https://doi.org/10.1175/MWR-D-12-00274.1
Greeshma M, Srinivas CV, Hari Prasad KBRR, Baskaran R, Venkatraman B. Sensitivity of tropical cyclone predictions in the coupled atmosphere–ocean model WRF-3DPWP to surface roughness schemes. Meteorol Appl. 2019; 26: 324–346. https://doi.org/10.1002/met.1765
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014.
Haidvogel, D.B., Arango, H.G., Budgell, W.P., Cornuelle, B.D., Curchitser, E.N., Lorenzo, E.D., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C., & Wilkin, J.L. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227, 3595-3624.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023): ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.bd0915c6 (Accessed on Nov-2023)
Hong, S.-Y., & Dudhia, J. (2012). Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bulletin of the American Meteorological Society, 93(1), ES6–ES9. https://doi.org/10.1175/2011bams3224.1
Hong, S., & Lim, J.J. (2006). The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-pacific Journal of Atmospheric Sciences, 42, 129-151.
Hong, S., Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.
Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H.-M. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, Journal of Climate, 34, 2923-2939. doi: 10.1175/JCLI-D-20-0166.1
Irene Marras, Elisabetta Fiori, Lauro Rossi, Antonio Parodi, "Effects of the Representation of Convection on the Modelling of Hurricane Tomas (2010)", Advances in Meteorology, vol. 2017, Article ID 1762137, 14 pages, 2017. https://doi.org/10.1155/2017/1762137
Kain, J. S., 2004: The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteor. Climatol., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kang, D., Heath, N. K., Gilliam, R. C., Spero, T. L., and Pleim, J. E., 2022: Lightning assimilation in the WRF model (Version 4.1.1): technique updates and assessment of the applications from regional to hemispheric scales, Geosci. Model Dev., 15, 8561–8579, https://doi.org/10.5194/gmd-15-8561-2022
Katsube, K., and M. Inatsu, 2016: Response of Tropical Cyclone Tracks to Sea Surface Temperature in the Western North Pacific. J. Climate, 29, 1955–1975, https://doi.org/10.1175/JCLI-D-15-0198.1.
Kwon, Y. C., & Hong, S. (2017). A Mass-Flux Cumulus Parameterization Scheme across Gray-Zone Resolutions. Monthly Weather Review, 145(2), 583-598. https://doi.org/10.1175/MWR-D-16-0034.1
Lee, C., & Chen, S. S. (2014). Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere–Ocean Model. Monthly Weather Review, 142(5), 1927-1944. https://doi.org/10.1175/MWR-D-13-00122.1
Mahoney, K. M. (2016). The Representation of Cumulus Convection in High-Resolution Simulations of the 2013 Colorado Front Range Flood. Monthly Weather Review, 144(11), 4265-4278. https://doi.org/10.1175/MWR-D-16-0211.1
Menemenlis, D., Fukumori, I., & Lee, T. (2005). Using Green's Functions to Calibrate an Ocean General Circulation Model. Monthly Weather Review, 133(5), 1224-1240. https://doi.org/10.1175/MWR2912.1
Menemenlis, Dimitris & Campin, Jean-Michel & Heimbach, Patrick & Hill, Cornelius & Lee, T. & Nguyen, An & Schodlok, Michael & Zhang, H.. (2008). ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis. AGU Fall Meeting Abstracts. 31.
Miyamoto, Y., Bryan, G. H., and Rotunno, R. (2017). An Analytical Model of Maximum Potential Intensity for Tropical Cyclones Incorporating the Effect of Ocean Mixing. Geophys. Res. Lett. 44, 5826–5835. doi:10.1002/2017gl073670
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102(D14), 16663–16682, doi:10.1029/97JD00237.
Mooney, P.A., Gill, D.O., Mulligan, F.J. and Bruyère, C.L. (2016), Hurricane simulation using different representations of atmosphere–ocean interaction: the case of Irene (2011). Atmos. Sci. Lett., 17: 415-421. https://doi.org/10.1002/asl.673
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. (2015). NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive (Updated daily) [ds084.1]. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D65D8PWK. Accessed Oct 2023.
NHC. 2023. Hurricane Otis Advisory Archive. Available at: https://www.nhc.noaa.gov/archive/2023/OTIS.shtml? (accessed 05 November 2022).
Park, H., Kim, G., Cha, D.-H., Chang, E.-C., Kim, J., Park, S.-H., & Lee, D.-K. (2022). Effect of a scale-aware convective parameterization scheme on the simulation of convective cells-related heavy rainfall in South Korea. Journal of Advances in Modeling Earth Systems, 14, e2021MS002696. https://doi.org/10.1029/2021MS002696
Price, J. F., R. A. Weller, and R. Pinkel (1986), Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing, J. Geophys. Res., 91(C7), 8411–8427, doi:10.1029/JC091iC07p08411.
Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced Stage Response to a Moving Hurricane. J. Phys. Oceanogr., 24, 233–260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.
Raymond T. Pollard, Peter B. Rhines & Rory O. R. Y. Thompson (1973) The deepening of the wind-Mixed layer, Geophysical Fluid Dynamics, 4:4, 381-404, DOI: 10.1080/03091927208236105
Reynolds, Richard W., Thomas M. Smith, Chunying Liu, Dudley B. Chelton, Kenneth S. Casey, Michael G. Schlax, 2007: Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Climate, 20, 5473-5496
Samala, B.K., C, N., Banerjee, S., Kaginalkar, A. and Dalvi, M. (2013), Study of the Indian summer monsoon using WRF–ROMS regional coupled model simulations. Atmos. Sci. Lett., 14: 20-27. https://doi.org/10.1002/asl2.409
Saunders, P., Y. Yu, and Z. Pu, 2019: Sensitivity of numerical simulations of Hurricane Joaquin
(2015) to cumulus parameterization schemes: Implications for processes controlling a hairpin turn in the track. J. Meteor. Soc. Japan, 97, 577-595.
Singh, J., Singh, N., Ojha, N., Sharma, A., Pozzer, A., Kiran Kumar, N., ... & Kotamarthi, V. R. (2021). Effects of spatial resolution on WRF v3. 8.1 simulated meteorology over the central Himalaya. Geoscientific Model Development, 14(3), 1427-1443.
Shchepetkin, A.F., & McWilliams, J.C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9, 347-404.
Shepherd, T.J., Walsh, K.J. Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones: impact of convective asymmetry. Meteorol Atmos Phys 129, 345–374 (2017). https://doi.org/10.1007/s00703-016-0472-y
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., … Powers, J. G. (2008). A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. doi:10.5065/D68S4MVH
Tewari, M., Chen, F., Wang, W., Dudhia, J., Lemone, M. A., … Mitchell, K. E. (2004). Implementation and verification of the unified Noah land-surface model in the WRF model [presentation]. In 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. American Meteorological Society: Seattle, WA, US.
Tiedtke, M., 1989: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. Mon. Wea. Rev., 117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.
Torn, R. D., and C. A. Davis, 2012: The Influence of Shallow Convection on Tropical Cyclone Track Forecasts. Mon. Wea. Rev., 140, 2188–2197, https://doi.org/10.1175/MWR-D-11-00246.1.
Trent, K. (2007). Simulation of hurricane-ocean interaction for Hurricane Katrina: Coupling WRF with a 1-D ocean model. doi:10.5065/dzrr-fx58
Varga, Á.J., Breuer, H. Sensitivity of simulated temperature, precipitation, and global radiation to different WRF configurations over the Carpathian Basin for regional climate applications. Clim Dyn 55, 2849–2866 (2020). https://doi.org/10.1007/s00382-020-05416-x
Wong, M.L., Chan, J.C., & Zhou, W. (2008). A Simple Empirical Model for Estimating the Intensity Change of Tropical Cyclones after Landfall along the South China Coast. Journal of Applied Meteorology and Climatology, 47, 326-338.
Yang, B., Y. Zhang, Y. Qian, T. Wu, A. Huang, and Y. Fang, 2015: Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM, Version 2.1. J. Climate, 28, 5622–5644, https://doi.org/10.1175/JCLI-D-14-00655.1.
Yao, M., and A. D. Del Genio, 1999: Effects of Cloud Parameterization on the Simulation of Climate Changes in the GISS GCM. J. Climate, 12, 761–779, https://doi.org/10.1175/1520-0442(1999)012<0761:EOCPOT>2.0.CO;2.
Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Mon. Wea. Rev., 139, 3489–3513, https://doi.org/10.1175/MWR-D-10-05091.1.
Zhang, F., Li, M., Ross, A. C., Lee, S. B., & Zhang, D. (2017). Sensitivity Analysis of Hurricane Arthur (2014) Storm Surge Forecasts to WRF Physics Parameterizations and Model Configurations. Weather and Forecasting, 32(5), 1745-1764. https://doi.org/10.1175/WAF-D-16-0218.1.
Zheng, Y., Alapaty, K., Herwehe, J. A., Del Genio, A. D., & Niyogi, D. (2016). Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme. Monthly Weather Review, 144(3), 833-860. https://doi.org/10.1175/MWR-D-15-0005.1