Diurnal to seasonal meteorological cycles along an equatorial Andean elevational gradient

Main Article Content

Luis Silva
Rolando Célleri
Mario Córdova

Abstract

The climate of the Andean equatorial mountains has a pronounced spatiotemporal variability, which, coupled with limited meteorological monitoring, hampers our understanding of the regional and local atmospheric processes that govern this variability. To deepen our understanding of this region’s climate, we analyzed diurnal to seasonal meteorological patterns of the main meteorological variables: precipitation, air temperature, relative humidity, incident solar radiation, and wind speed and direction. We used a unique 10-year high-resolution dataset from March 2013 to February 2023 along an elevation gradient located in southern Ecuador. Our analyses reveal a trimodal regime of precipitation; two wet seasons are associated with convective processes influenced by the position of the Intertropical Convergence Zone (ITCZ) over the study area during the equinoxes, and the less humid season is due to the intensification of the Walker circulation, which produces subsidence over the study area. The relative humidity shows distinct daily and seasonal variations, reaching minimum daily values around noon when the air temperature is the highest, and an annual minimum in November. Incident solar radiation reaches its maximum values around the equinoxes when sunlight is almost perpendicular, which produces greater heating on the surface and, hence, a more humid atmosphere. The meridional displacement of the ITCZ around the year influences the climate, increasing humidity from March to May and wind speed from April to July. Our research reveals significant differences between diurnal and seasonal meteorological cycles, highlighting the importance of altitude, topography, and wind patterns in the climate dynamics of the equatorial Andes.

Downloads

Download data is not yet available.

Article Details

Sharing on:

PLUMX metrics

References

Barros AP, Lang TJ. 2003. Monitoring the Monsoon in the Himalayas: Observations in Central Nepal, June 2001. Mon Weather Rev 131:1408–1427. https://doi.org/10.1175/1520-0493(2003)131

Barstad I, Smith RB. 2005. Evaluation of an orographic precipitation model. J Hydrometeorol 6:85–99. https://doi.org/10.1175/JHM-404.1

Basalirwa CP., Odiyo JO, Mngodo RJ, Mpeta EJ. 1999. The climatological regions of Tanzania based on the rainfall characteristics. Int J Climatol 19:69–80. https://doi.org/10.1002/(sici)1097-0088(199901)19:1<69::aid-joc343>3.0.co;2-m

Basalirwa CPK. 1995. Delineation of Uganda into climatological rainfall zones using the method of principal component analysis. Int J Climatol 15:1161–1177. https://doi.org/10.1002/JOC.3370151008

Bedoya-Soto JM, Aristizábal E, Carmona AM, Poveda G. 2019. Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of Colombia (1998–2005). Front. Earth Sci. 7

Bendix J, Rollenbeck R, Göttlicher D, Cermak J. 2006a. Cloud occurrence and cloud properties in Ecuador. Clim Res 30:133–147. https://doi.org/10.3354/cr030133

Bendix J, Rollenbeck R, Reudenbach C. 2006b. Diurnal patterns of rainfall in a tropical Andean valley of southern Ecuador as seen by a vertically pointing K-band Doppler radar. Int J Climatol 26:829–846. https://doi.org/10.1002/JOC.1267

Bendix J, Trachte K, Cermak J. 2009. Formation of convective clouds at the foothills of the tropical eastern Andes (South Ecuador). J Appl Meteorol Climatol 48:1682–1695. https://doi.org/10.1175/2009JAMC2078.1

Brauman KA, Freyberg DL, Daily GC. 2010. Forest structure influences on rainfall partitioning and cloud interception: A comparison of native forest sites in Kona, Hawai’i. Agric For Meteorol 150:265–275. https://doi.org/10.1016/j.agrformet.2009.11.011

Buytaert W, Célleri R, De Bièvre B. 2006. Human impact on the hydrology of the Andean páramos. https://doi.org/10.1016/j.earscirev.2006.06.002

Campozano L, Célleri R, Trachte K. 2016. Rainfall and Cloud Dynamics in the Andes: A Southern Ecuador Case Study. Adv. Meteorol. 2016

Carrillo-Rojas G, Silva B, Córdova M. 2016. Dynamic mapping of evapotranspiration using an energy balance-based model over an andean páramo catchment of southern ecuador. Remote Sens 8:. https://doi.org/10.3390/rs8020160

Célleri R, Feyen J. 2009. The Hydrology of Tropical Andean Ecosystems: Importance, Knowledge Status, and Perspectives. Source Mt Res Dev 29:350–355. https://doi.org/10.1659/mrd.00007

Celleri R, Willems P, Buytaert W, Feyen J. 2007. Space-time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol Process 21:3316–3327. https://doi.org/10.1002/HYP.6575

Córdova M, Carrillo-Rojas G, Crespo P. 2015. Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Mt Res Dev 35:230–239. https://doi.org/10.1659/MRD-JOURNAL-D-14-0024.1

Córdova M, Célleri R, Shellito CJ. 2016. Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: Implications for temperature mapping. Arctic, Antarct Alp Res 48:673–684. https://doi.org/10.1657/AAAR0015-077

Dai A. 2001. Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J Clim 14:1112–1128. https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2

Diemer M. 1996. Microclimatic convergence of high-elevation tropical páramo and temperate-zone alpine environments. J Veg Sci 7:821–830. https://doi.org/10.2307/3236460

Emck P. 2007. A climatology of south Ecuador-with special focus on the major Andean ridge as Atlantic-Pacific climate divide. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Espinoza JC, Garreaud R, Poveda G. 2020. Hydroclimate of the Andes Part I: Main Climatic Features. Front. Earth Sci. 8

Fagua JC, Gonzalez VH. 2007. Growth rates, reproductive phenology, and pollination ecology of Espeletia grandiflora (Asteraceae), a giant Andean caulescent rosette. Plant Biol (Stuttg) 9:127–135. https://doi.org/10.1055/S-2006-924544

Garreaud RD. 2009. The Andes climate and weather. Adv Geosci 22:3–11. https://doi.org/10.5194/adgeo-22-3-2009

Guo J, Zhai P, Wu L. 2014. Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet. Int J Climatol 34:2940–2956. https://doi.org/10.1002/JOC.3886

Hardy DR, Vuille M, Braun G. 1998. Annual and Daily Meteorological Cycles at High Altitude on a Tropical Mountain. Bull Am Meteorol Soc 79:1899–1913. https://doi.org/10.1175/1520-0477(1998)079<1899:AADMCA>2.0.CO;2

Houze RA. 2012. Orographic effects on precipitating clouds. Rev. Geophys. 50

Ilbay-Yupa M, Lavado-Casimiro W, Rau P. 2021. Updating regionalization of precipitation in Ecuador. Theor Appl Climatol 143:1513–1528. https://doi.org/10.1007/S00704-020-03476-X/METRICS

Immerzeel WW, Petersen L, Ragettli S, Pellicciotti F. 2014. The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour Res 50:2212–2226. https://doi.org/10.1002/2013WR014506

Junquas C, Takahashi K, Condom T. 2018. Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Clim Dyn 50:3995–4017. https://doi.org/10.1007/s00382-017-3858-8

Kottek M, Grieser J, Beck C. 2006. World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

Kudo G, Suzuki S. 2004. Flowering phenology of tropical-alpine dwarf trees on Mount Kinabalu, Borneo. J Trop Ecol 20:563–571. https://doi.org/10.1017/S0266467404001841

Kumar S, Del Castillo-Velarde C, Prado JMV. 2020. Rainfall Characteristics in the Mantaro Basin over Tropical Andes from a Vertically Pointed Profile Rain Radar and In-Situ Field Campaign. Atmos 2020, Vol 11, Page 248 11:248. https://doi.org/10.3390/ATMOS11030248

Laraque A, Ronchail J, Cochonneau G. 2007. Heterogeneous Distribution of Rainfall and Discharge Regimes in the Ecuadorian Amazon Basin. J Hydrometeorol 8:1364–1381. https://doi.org/10.1175/2007JHM784.1

Lyra GB, Oliveira-Júnior JF, Zeri M. 2014. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. Int J Climatol 34:3546–3558. https://doi.org/10.1002/JOC.3926

Montenegro-Díaz P, Célleri R, Carrillo-Rojas G. 2023. Overcast sky condition prevails on and influences the biometeorology of the tropical Andean Páramos. J Mt Sci 20:78–86. https://doi.org/10.1007/s11629-022-7575-3

Newell FL, Ausprey IJ, Robinson SK. 2022. Spatiotemporal climate variability in the Andes of northern Peru: Evaluation of gridded datasets to describe cloud forest microclimate and local rainfall. Int J Climatol 42:5892–5915. https://doi.org/10.1002/joc.7567

Ochoa A, Campozano L, Sánchez E. 2016. Evaluation of downscaled estimates of monthly temperature and precipitation for a Southern Ecuador case study. Int J Climatol 36:1244–1255. https://doi.org/10.1002/joc.4418

Oettli P, Camberlin P. 2005. Influence of topography on monthly rainfall distribution over East Africa. Clim Res 28:199–212. https://doi.org/10.3354/cr028199

Oki T, Musiake K. 1994. Seasonal Change of the Diurnal Cycle of Precipitation over Japan and Malaysia. J Appl Meteorol Climatol

Poveda G, Jaramillo A, Gil MM. 2001. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour Res 37:2169–2178. https://doi.org/10.1029/2000WR900395

Poveda G, Mesa OJ, Salazar LF. 2005. The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Mon Weather Rev 133:228–240. https://doi.org/10.1175/MWR-2853.1

Rapp JM, Silman MR. 2012. Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Clim Res 55:17–32. https://doi.org/10.3354/cr01127

Rohm W, Yuan Y, Biadeglgne B. 2014. Ground-based GNSS ZTD/IWV estimation system for numerical weather prediction in challenging weather conditions. Atmos Res 138:414–426. https://doi.org/10.1016/J.ATMOSRES.2013.11.026

Ruiz-Hernández JC, Condom T, Ribstein P. 2021. Spatial variability of diurnal to seasonal cycles of precipitation from a high-altitude equatorial Andean valley to the Amazon Basin. J Hydrol Reg Stud 38:. https://doi.org/10.1016/j.ejrh.2021.100924

Schubert C. 1982. The Glaciation of the Ecuadorian Andes. Eos, Trans Am Geophys Union 63:835–836. https://doi.org/10.1029/EO063I044P00835-02

Seo E, Dirmeyer PA. 2022. Understanding the diurnal cycle of land–atmosphere interactions from flux site observations. Hydrol Earth Syst Sci 26:5411–5429. https://doi.org/10.5194/hess-26-5411-2022

Shahgedanova M, Adler C, Gebrekirstos A. 2021. Mountain Observatories: Status and Prospects for Enhancing and Connecting a Global Community. Mt Res Dev 41:. https://doi.org/10.1659/mrd-journal-d-20-00054.1

Shea JM, Wagnon P, Immerzeel WW. 2015. A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya. Int. J. Water Resour. Dev. 31:174–200

Singh P, Haritashya UK, Kumar N. 2007. Meteorological study for Gangotri Glacier and its comparison with other high altitude meteorological stations in central Himalayan region. Nord Hydrol 38:59–77. https://doi.org/10.2166/nh.2007.028

Sklenár P. 1999. Nodding capitula in superparamo Asteraceae: An adaptation to unpredictable environment. Biotropica 31:394–402. https://doi.org/10.1111/j.1744-7429.1999.tb00381.x

Sklenár P, Kuèerová A, Macková J, Macek P. 2015. Temporal variation of climate in the high-elevation páramo of Antisana, Ecuador. Geogr Fis e Din Quat 38:67–78. https://doi.org/10.4461/GFDQ.2015.38.07

Sømme L, Davidson RL, Onore G. 1996. Adaptations of insects at high altitudes of Chimborazo, Ecuador. Eur J Entomol 93:313–318

Suárez E, Encalada AC, Chimbolema S. 2023. On the Use of “Alpine” for High-Elevation Tropical Environments. https://doi.org/101659/mrd202200024 43:V1–V4. https://doi.org/10.1659/MRD.2022.00024

Takahashi HG, Yoshikane T, Hara M. 2010. High-resolution modelling of the potential impact of land surface conditions on regional climate over Indochina associated with the diurnal precipitation cycle. Int J Climatol 30:2004–2020. https://doi.org/10.1002/joc.2119

Vásquez C, Célleri R, Córdova M, Carrillo-Rojas G. 2022. Improving reference evapotranspiration (ETo) calculation under limited data conditions in the high Tropical Andes. Agric Water Manag 262:. https://doi.org/10.1016/j.agwat.2021.107439

Wagnon P, Lafaysse M, Lejeune Y. 2009. Understanding and modeling the physical processes that govern the melting of snow cover in a tropical mountain environment in Ecuador. J Geophys Res Atmos 114:19113. https://doi.org/10.1029/2009JD012292

Wang B. 1993. Climatic Regimes of Tropical Convection and Rainfall. Jounal Clim 1109–1118

Whiteman DC. 2001. Mountain Meteorology: Fundamentals and Applications

Witte HJL. 1996. Seasonal and altitudinal distribution of precipitation, temperature and humidity in the {Parque Los Nevados transect (Central Cordillera, Colombia)}. Stud Trop Andean Ecosyst Vol 4 1983:279–328

WMO. 2017. Guide to the Global Observing System

Wodzicki KR, Rapp AD. 2016. Long-term characterization of the Pacific ITCZ using TRMM, GPCP, and ERA-Interim. J. Geophys. Res. 121:3153–3170

Wu Y, Liu J, Zhai J. 2018. Comparison of dry and wet deposition of particulate matter in near-surface waters during summer. PLoS One 13:e0199241. https://doi.org/10.1371/journal.pone.0199241

Yang GY, Slingo J. 2001. The diurnal cycle in the tropics. Mon Weather Rev 129:784–801. https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2