Severe winter conditions in the Citlaltepetl-Cofre de Perote mountain range, 2021-2022
Main Article Content
Abstract
The central border that divides the states of Puebla and Veracruz is characterized by being the highest territorial limit in Mexico; it is composed of three of the highest mountains in the country. This border reaches a length of 100 km, forming a watershed that continuously exceeds 3000 m in altitude. Due to its elevation, winter freezing conditions are frequent; however, due to changing climate patterns, in recent winter seasons, severe frosts and snowfalls have occurred at elevations well below the main peaks, affecting the health of thousands of vulnerable residents of both states surrounding this mountain range. Because the 2021-2022 winter season was one of the most intense in all North America, with severe impacts in Mexico as a result of freezing temperatures and snowfall, this work analyzes the winter conditions in 2021-2022 through the monitoring of frontal systems and the analysis of data from automatic meteorological stations near the study area. From the records, the lower limit of surface freezing was estimated for each arrival of cold air masses; the occurrence of snowfall was determined by remote sensing, and the area of snow cover was also calculated. At the same time, the population affected by freezing weather conditions was estimated. The surface freezing starts at elevations as low as 2259 m, covering an area of up to 2949 km2, which corresponds to the entire study region, affecting 139 towns in Veracruz and 163 in Puebla.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.
PLUMX metrics
References
Abrignani MG, Lombardo A, Braschi A, Renda N, Abrignani V. 2022. Climatic influences on cardiovascular diseases. World J Cardiol. Mar 26; 14(3):152-169. doi: 10.4330/wjc.v14.i3.152. PMID: 35432772; PMCID: PMC8968453.
Austin-Travis County, ATC. 2021. Winter Storm Uri After-Action Report & Improvement Plan Technical Report. 155 pp.
Cámara de Diputados del H. Congreso de la Unión (CD). 2023. Ley General de Cambio Climático (Última reforma). Secretaría General, Secretaría de Servicios Parlamentarios.
Diario Oficial de la Federación 15-11-2023. https://www.diputados.gob.mx/LeyesBiblio/pdf/LGCC.pdf
Cassou C. 2008. Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455(7212), 523-527.
Castelo-Branco C, Soveral I. 2014. The immune system and aging: a review. Gynecol Endocrinol. Jan; 30(1):16-22. doi: 10.3109/09513590.2013.852531. Epub 2013 Nov 12. PMID: 24219599.
Conagua. 2021. Reporte del clima en México, febrero 2021. Coordinación General del Servicio Meteorológico Nacional. Año 11, Número 2. 60 pp.
Conagua (19 de octubre de 2023). Perspectiva y seguimiento de frentes fríos. https://smn.conagua.gob.mx/es/climatologia/pronostico-climatico/frentes-frios
Consejo Nacional de Población (CONAPO). 2020. Índice de marginación por localidad 2020. Disponible en: https://www.gob.mx/conapo/documentos/indices-de-marginacion-2020-284372
Coumou D, Rahmstorf S. 2012. A decade of weather extremes. Nature climate change, 2(7), 491-496.
Diario de Xalapa (22 de enero de 2024). Cofre de Perote “se pinta de blanco”, se registra la tercera Nevada de la temporada. https://www.diariodexalapa.com.mx/local/frente-frio-28-cofre-de-perote-se-pinta-de-blanco-se-registra-la-tercera-nevada-de-la-temporada-11322894.html
Díaz JAJ, Sánchez MDJÁ, Cabañas RT. 2020. Cambios en la Mortalidad por Eventos Climáticos Extremos en México entre el 2000 y 2015. Revista de Estudios Latinoamericanos sobre Reducción del Riesgo de Desastres REDER, 4(1), 80-94. https://doi.org/10.55467/reder.v4i1.43
El mundo de hoy (EMDH) (18 de octubre de 2021). Suman 20 muertes por la onda gélida en el norte del país. https://mundodehoy.com/2021/02/18/suman-20-muertes-por-la-onda-gelida-en-el-norte-del-pais/
Fernández-Eguiarte A, Zavala-Hidalgo J, Romero-Centeno R. 2010. Atlas climático digital de México. Centro de Ciencias de la Atmósfera, UNAM. Available online: http://atlasclimatico. unam. mx/atlas/kml.
Frontier Weather (FW) (2023, October 16th). A quick guide to important drivers of US winter weather patterns. Available at: https://frontierweather.dtn.com/WinterClimateDrivers.pdf
Hajat S. 2018. Health effects of milder winters: a review of evidence from the United Kingdom. Environ Health. 2017 Dec 5; 16 (Suppl 1):109. doi: 10.1186/s12940-017-0323-4. Erratum in: Environ Health. Jan 16; 17 (1):7. PMID: 29219101; PMCID: PMC5773863.
Huffman GJ, EF Stocker, DT Bolvin, EJ Nelkin, Jackson Tan. 2019. GPM IMERG Late Precipitation L3 1 day 0.1 degree x 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [September 17 2023], 10.5067/GPM/IMERGDL/DAY/06
Infobae (21 de enero de 2024). Se va el frente frío 28: estados que aún tendrán nevadas, fueres lluvias y bajas temperaturas hoy 21 de enero. https://www.infobae.com/mexico/2024/01/21/se-va-el-frente-frio-28-estados-que-aun-tendran-nevadas-fuertes-lluvias-y-bajas-temperaturas-hoy-21-de-enero/
La Jornada (19 de octubre de 2021). Tres muertos por frío en Matamoros y uno en Juárez; pronostica el SMN más heladas. https://www.jornada.com.mx/notas/2021/02/18/estados/tres-muertos-por-frio-en-matamoros-y-uno-en-juarez-pronostica-el-smn-mas-heladas/
Lagerquist R, Allen JT, McGovern A. 2020. Climatology and variability of warm and cold fronts over North America from 1979 to 2018. Journal of Climate, 33(15), 6531-6554. https://doi.org/10.1175/JCLI-D-19-0680.1
Mitchell DM, Osprey SM, Gray LJ, Butchart N, Hardiman SC, Charlton-Perez AJ, Watson P. 2012. The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex. Journal of the atmospheric sciences, 69(8), 2608-2618. https://doi.org/10.1175/JAS-D-12-021.1
Müller L, Di Benedetto S, Pawelec G. 2019. The Immune System and Its Dysregulation with Aging. Subcell Biochem. 91:21-43. doi: 10.1007/978-981-13-3681-2_2. PMID: 30888648
National Oceanic and Atmospheric Administration (NOAA). 2017. Social and economic effects of severe winter storms: New York case study, Final Report. 66 pp.
Nejat A, Solitare L, Pettitt E, Mohsenian-Rad H. 2022. Equitable community resilience: the case of winter storm Uri in Texas. International Journal of Disaster Risk Reduction, 77, 103070. https://doi.org/10.1016/j.ijdrr.2022.103070
Pons MR, Herrera S, Gutiérrez JM. 2016. Future trends of snowfall days in northern Spain from ENSEMBLES regional climate projections. Climate Dynamics, 46, 3645-3655. https://doi.org/10.1007/s00382-015-2793-9
Quante L, Willner SN, Middelanis R, Levermann A. 2021. Regions of intensification of extreme snowfall under future warming. Scientific Reports, 11(1), 16621. https://doi.org/10.1038/s41598-021-95979-4
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. 2023. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol. (3):2259-2287. doi: 10.1007/s42770-023-01057-4. Epub 2023 Jul 21. PMID: 37477802; PMCID: PMC10484896.
Reuters (21 de enero de 2024). Deadly winter weather keeps icy grip across much of the US. https://www.reuters.com/world/us/deadly-winter-weather-keeps-icy-grip-across-much-us-2024-01-20/
Shapiro M, Keyser D. 1990. Fronts, jet streams, and the tropopause: extratropical cyclones, the Erik Palmén memorial volume. Am. Meteorol. Soc., Boston, Mass, 167-191. https://doi.org/10.1007/978-1-944970-33-8_10
Smith ET, Sheridan SC. 2018. The characteristics of extreme cold events and cold air outbreaks in the eastern United States. International Journal of Climatology, 38, e807-e820. https://doi.org/10.1002/joc.5408
Sosa DM, Vázquez V. 2014. Vulnerabilidad diferenciada por género, clase y edad. El impacto del huracán Karl en La Antigua, Veracruz. En D. Soares, G. Millán e I. Gutiérrez (Eds.). Reflexiones y expresiones de la vulnerabilidad social en el sureste de México. 186-207. Instituto Mexicano de Tecnología del Agua y Centro Agronómico Tropical de Investigación y Enseñanza.
Soto V, Granados H, González G. 2019. Estimación de la temperatura basal del “Glaciar Norte” del volcán Citlaltépetl, México. Modelo para determinar la presencia de permafrost subglaciar. Estudios Geográficos, 80(287), e019-e019. https://doi.org/10.3989/estgeogr.201936.016
Soto V, Delgado-Granados H. 2020. Estimación de la temperatura del aire en la alta montaña mexicana mediante un modelo de elevación del terreno: caso del volcán Nevado de Toluca (México)/Estimation of the air temperature in the Mexican high mountains by using of digital elevation model: case of the Nevado de Toluca volcano (Mexico). Ería, 40(2), 167-182. https://doi.org/10.17811/er.2.2020.167-182
Soto V, Canché JMP, Méndez JLA. 2021. Altitud del límite superior de bosque en el Eje Neovolcánico Mexicano, un referente climático de la alta montaña en México. Estudios Geográficos, 82(290), e063-e063. https://doi.org/10.3989/estgeogr.202075.075
Soto V, Cervantes J. 2023. The influence of mountainous relief on the vertical gradient of precipitation and pluvial zoning in the central slope of the Gulf of Mexico. Singapore Journal of Tropical Geography, 44(1), 112-129. https://doi.org/10.1111/sjtg.12467
Soto V, Welsh, CM. 2023. Línea superior de bosque, un indicador de cambio climático en las montañas mexicanas. En: Investigaciones Científicas y Tecnológicas para la Seguridad Alimentaria Veracruz. Año 2, No 1. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, INIFAP.
Soto V, Delgado-Granados H, Welsh CM, Yoshikawa K. 2023a. Glacial reconstruction and periglacial dynamics at the end of Late Pleistocene on the surface of Cofre de Perote volcano, México: a climatological retrospective. Journal of Mountain Science, 20(9), 2453-2467. https://doi.org/10.1007/s11629-023-8230-3
Soto V, Alanís JL, Pech JM, Chagoya JL. 2023b. Distribution and spatio-temporal variation of temperature and precipitation in Sierra de Otontepec Ecological Reserve, Veracruz, Mexico, through GIS modeling. Atmósfera, 37. https://doi.org/10.20937/ATM.53124
Soto, V, Delgado-Granados H. 2024. Occurrence and characteristics of snowfall on the highest mountain of Mexico (Citlaltépetl volcano) through the ground’s surface temperature. Atmósfera, 38, 35–54. https://doi.org/10.20937/ATM.53204
Spiridonov V, Ćurić M, Spiridonov V, Ćurić M. 2021. Air Masses and Fronts. Fundamentals of Meteorology, 253-261.
Stendel M, Francis J, White R, Williams PD, Woollings T. 2021. The jet stream and climate change. In Climate change (pp. 327-357). Elsevier.
Tortorella MN, Laborde A. 2021. Escenarios de exposición a monóxido de carbono que orientan la sospecha clínica de intoxicación aguda. Revista Médica del Uruguay, 37(2). https://doi.org/10.29193/RMU.37.2.4
Travieso-Bello AC, C. Welsh-Rodríguez, CA Ochoa-Martínez. 2018. Desastre y vulnerabilidad: el caso de dos localidades veracruzanas afectadas por el huracán Karl y la tormenta tropical Matthew, pp: 295-313. En: J. M. Rodríguez Esteves, C. M. Welsh Rodríguez, M. de L. Romo Aguilar y A. C. Travieso Bello. Riesgo de desastres en México: Eventos hidrometeorológicos y climáticos. Instituto Mexicano de Tecnología del Agua y Red de Desastres Asociados a Fenómenos Hidrometeorológicos y Climáticos (REDESClim), Morelos, México.
Vargas-Téllez L. 2009. Hypothermia. Archivos de Medicina de Urgencia de México, 1(2), 55-62.
Veettil AV, Fares A, Awal R. 2022. Winter storm Uri and temporary drought relief in the western climate divisions of Texas. Science of the total environment, 835, 155336. https://doi.org/10.1016/j.scitotenv.2022.155336
Wills RC, White RH, Levine XJ. 2019. Northern Hemisphere stationary waves in a changing climate. Current climate change reports, 5, 372-389. https://doi.org/10.1007/s40641-019-00147-6
Woollings T, Hannachi A, Hoskins B. 2010. Variability of the North Atlantic eddy‐driven jet stream. Quarterly Journal of the Royal Meteorological Society, 136(649), 856-868. https://doi.org/10.1002/qj.625
Woollings T, Drouard M, O’Reilly CH, Sexton DM, McSweeney C. 2023. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Communications Earth & Environment, 4(1), 125. https://doi.org/10.1038/s43247-023-00792-8
Yuan S, Quiring SM, Patil S. 2016. Spatial and temporal variations in the accuracy of meteorological drought indices. Cuadernos de Investigación Geográfica, 42(1), 167-183. https://doi.org/10.18172/cig.2916
Zhang X, Yang L, Zhang H, Xing W, Wang Y, Bai P, Zhang L, Hayakawa K, Toriba A, Wei Y, Tang N. 2021. Assessing Approaches of Human Inhalation Exposure to Polycyclic Aromatic Hydrocarbons: A Review. Int J Environ Res Public Health, 18(6):3124. doi: 10.3390/ijerph18063124. PMID: 33803562; PMCID: PMC8003068.
Zermeño-Díaz DM, Gómez-Mendoza L, Acuña-Soto R. 2021. Patrones espacio-temporales de mortalidad por frío excesivo en México. Quivera Revista de Estudios Territoriales, 23(1), 73-87. https://doi.org/10.36677/qret.v23i1.14264