Satellite precipitation product assessment and correction technique selection at sub-basin scale for maximum annual events. Case study: Acaponeta River basin

Main Article Content

Edith Bonilla-López
René Lobato-Sánchez
Josué Medellín-Azuara
Carlos Patiño-Gómez †

Abstract

Satellite precipitation products (SPP) are increasingly being used for detailed hydrological studies due to scarce and discontinuous precipitation observations at different spatial and temporal scales. However, to evaluate its full utility, it is necessary to assess and correct the bias between estimated and observed precipitation (OP). The aim of this paper is to evaluate the CHIRPSv2.0 product for maximum annual events and different climatological conditions based on in-situ observations, using statistical metrics and selecting from linear scaling (LS), local intensity scaling (LOCI) and power transformation (PT) the appropriate bias correction technique (CT), at point and sub-basin scale, improving the maximum annual precipitation records for the period 2001-2020 in the Acaponeta River basin, Mexico. Previous applications of bias CT have focused on broader temporal scales rather than specific maximum events. Differences in the performance of the correction methods were identified between point and sub-basin scales. PT presented a good performance at the point scale, in contrast to percentual bias (PBIAS), which resulted in a great overestimation at the sub-basin scale in the upper zone for the average and dry years, while for the wet year, it overestimated in the lower part. Although LS and LOCI generally observed a good PBIAS reduction at the gauge stations, LS overestimated at the sub-basin scale overall. LOCI showed better SPP corrections in the middle and lower zones and a wider range of overestimation for the upper basins in the middle and wet years. The corrected annual maximum estimated values for the revised period are useful for hydrological analysis in the context of flood risk assessment.

Downloads

Download data is not yet available.

Article Details

Sharing on:

PLUMX metrics

References

Adhikari, A., & Behrangi, A. 2022. Assessment of Satellite Precipitation Products in Relation With Orographic Enhancement Over the Western United States. Earth and Space Science, 9(2). https://doi.org/10.1029/2021EA001906

Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., & Thinh, N. X. 2018. Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213, 34–50. https://doi.org/10.1016/j.atmosres.2018.05.011

Bhatti, H. A., Rientjes, T., Haile, A. T., Habib, E., & Verhoef, W. 2016. Evaluation of bias correction method for satellite-based rainfall data. Sensors (Switzerland), 16(6). https://doi.org/10.3390/s16060884

Belayneh, A., Sintayehu, G., Gedam, K., & Muluken, T. 2020. Evaluation of satellite precipitation products using HEC-HMS model. Modeling Earth Systems and Environment, 6(4), 2015–2032. https://doi.org/10.1007/s40808-020-00792-z

CICESE. 2022. Base de datos climatología nacional (sistema CLICOM). Available at: http://clicom-mex.cicese.mx/ (accessed 9 January 2023)

CENAPRED. 2021. Inundaciones históricas a nivel nacional. Available at: http://www.atlasnacionalderiesgos.gob.mx/portal/fenomenos/ (accessed 15 March 2022)

CENAPRED. 2022. IMPACTO SOCIOECONÓMICO DE LOS PRINCIPALES DESASTRES OCURRIDOS EN MÉXICO RESUMEN EJECUTIVO 2021. Available at: www.gob.mx/cenapred (accessed 3 June 2023)

CENAPRED. 2023. IMPACTO SOCIOECONÓMICO DE LOS PRINCIPALES DESASTRES OCURRIDOS EN MÉXICO RESUMEN EJECUTIVO 2022. Available at: www.gob.mx/cenapred (accessed 4 September 2023)

Chen, H., Sun, L., Cifelli, R., & Xie, P. (2022). Deep Learning for Bias Correction of Satellite Retrievals of Orographic Precipitation. IEEE Transactions on Geoscience and Remote Sensing, 60. https://doi.org/10.1109/TGRS.2021.3105438

CONABIO. 1998. Climas. Portal de Geoinformación 2023. Available at: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/clima/climas/clima1mgw (accessed 23 October 2023)

CONAGUA. 2012. La evolución de la Sequía en México en 2011. Available at: https://www.inegi.org.mx/contenidos/eventos/2012/sequias/P1_004-05AdelinaAlbanilyReynaldoPascual.pdf (accessed 15 June 2022)

CONAGUA. 2023. Distribución de la precipitación normal. Available at: https://sinav30.conagua.gob.mx:8080/sina/ (accessed 13 June 2021)

CONAGUA. 2019. Sistema de Información Hidrológica. Available at: https://sih.conagua.gob.mx/#:~:text=El%20Sistema%20de%20Informaci%C3%B3n%20Hidrol%C3%B3gica,de%20otras%20dependencias%20del%20Gobierno (accessed 13 June 2021)

CONAGUA. 2022. Ciclones tropicales 1970-2021. Available at: http://sina.conagua.gob.mx/sina/tema.php?tema=huracanes&ver=mapa (accessed 13 June 2021)

Derin, Y., & Yilmaz, K. K. 2014. Evaluation of multiple satellite-based precipitation products over complex topography. Journal of Hydrometeorology, 15(4), 1498–1516. https://doi.org/10.1175/JHM-D-13-0191.1

Fang, G. H., Yang, J., Chen, Y. N., & Zammit, C. 2015. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19(6), 2547–2559. https://doi.org/10.5194/hess-19-2547-2015

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. 2015. The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Scientific Data, 2. https://doi.org/10.1038/sdata.2015.66

Goshime, D. W., Absi, R., Alemseged, Haile, T., Béatrice Ledésert, & Rientjes,T. 2020. Bias-Corrected CHIRP Satellite Rainfall for Water Level Simulation, Lake Ziway, Ethiopia. Journal of Hydrologic Engineering, 25(9). https://doi.org/10.1061/(ASCE)

Huang, Y. C., & Lin, Y. L. 2014. A study on the structure and precipitation of Morakot (2009) induced by the Central Mountain Range of Taiwan. Meteorology and Atmospheric Physics, 123(3–4), 115–141. https://doi.org/10.1007/s00703-013-0290-4

INEGI. 2007. Conjunto de datos vectoriales escala 1:1000000 Temperatura media anual. Available at: https://www.inegi.org.mx/temas/climatologia/#descargas (accessed 23 October 2023)

JAXA. 2010. Advanced Land Observing Satellite. Japan Aerospace Exploration Agency. Available at: https://www.eorc.jaxa.jp/ALOS/en/index_e.htm (accessed 10 June 2023)

Kite, G. W., & Kouwen, N. 1992. Watershed modeling using land classifications. Water Resources Research, 28(12), 3193–3200. https://doi.org/10.1029/92WR01819

Lafon, T., Dadson, S., Buys, G., & Prudhomme, C. 2013. Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. International Journal of Climatology, 33(6), 1367–1381. https://doi.org/10.1002/joc.3518

Mendoza Uribe, I. 2019. Desempeño del algoritmo RRQPE del satélite GOES 16 para la estimación de lluvia en el estado de Nayarit tras el paso del huracán Willa Performance of the algorithm RRQPE of the satellite GOES 16 for the estimation of rain in the state of Nayarit after the passage of hurricane Willa. Ingeniería, 23(2), 37–51.

Morales-Velazquez, M. I., del Socorro Herrera, G., Aparicio, J., Rafieeinasab, A., & Lobato-Sanchez, R. 2021. Evaluating reanalysis and satellite-based precipitation at regional scale: A case study in southern Mexico. Atmosfera,34(2), 189–206. https://doi.org/10.20937/ATM.52789

NOAA. 2023. Weather Glossary. National Oceanic and Atmospheric Administration. https://www.noaa.gov/jetstream/appendix/weather-glossary (accessed 23 October 2023)

Roque Quiroz, R. A. 2023. Validación de la data de precipitación (1981-2016) del producto PISCO v2.1: Estación meteorológica, elevación, estacionalidad del año y región climática en la cuenca Tumbes, Perú. Manglar, 20(1), 41–50. https://doi.org/10.57188/manglar.2023.005

Saber, M., & Yilmaz, K. K. 2018. Evaluation and bias correction of satellite-based rainfall estimates for modelling flash floods over the Mediterranean region: Application to Karpuz River Basin, Turkey. Water, 10(5). https://doi.org/10.3390/w10050657

Schmidli, J., Frei, C., & Vidale, P. L. 2006. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. International Journal of Climatology, 26(5), 679–689. https://doi.org/10.1002/joc.1287

Soo, E. Z. X., Jaafar, W. Z. W., Lai, S. H., Othman, F., Elshafie, A., Islam, T., Srivastava, P., & Hadi, H. S. O. 2020. Precision of raw and bias-adjusted satellite precipitation estimations (TRMM, IMERG, CMORPH, AND PERSIANN) over extreme flood events: Case study in Langat river basin, Malaysia. Journal of Water and Climate Change, 11(1S), 322–342. https://doi.org/10.2166/wcc.2020.180

Srivastava, A., Yetemen, O., Saco, P. M., Rodriguez, J. F., Kumari, N., & Chun, K. P. (2022). Influence of orographic precipitation on coevolving landforms and vegetation in semi-arid ecosystems. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.5427

Toté, C., Patricio, D., Boogaard, H., van der Wijngaart, R., Tarnavsky, E., & Funk, C. 2015. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing, 7(2), 1758–1776. https://doi.org/10.3390/rs70201758

Velasquez, P., Messmer, M., & Raible, C. C. 2019. A new bias-correction method for precipitation over complex terrain suitable for different climate states. Geoscientific Model Development. https://doi.org/10.5194/gmd-2019-131

Yeh, N. C., Chuang, Y. C., Peng, H. S., & Hsu, K. L. 2020. Bias Adjustment of Satellite Precipitation Estimation Using Ground-Based Observation: Mei-Yu Front Case Studies in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 56(3), 485–492. https://doi.org/10.1007/s13143-019-00152-7

Zhang, Z., Koren, V., Smith, M., Reed, S., & Wang, D. 2004. Use of Next Generation Weather Radar Data and Basin Disaggregation to Improve Continuous Hydrograph Simulations. Journal of Hydrologic Engineering, 9(2). https://doi.org/10.1061/ASCE1084-069920049:2103