Steady state and transient solutions of the nonlinear forced shallow water equations in one space dimension
Main Article Content
Abstract
							The one-dimensional shallow water equations permit steady state  solutions for a given forcing that is independent of time. When the  forcing is sufficiently small one obtains three periodic solution of  which two have numerically large velocities and the third a somewhat  lower velocity. Examples of solutions for simple forcing patterns are  given. The nonlinear one-dimensional equations are simplified in the  usual way by neglecting the advection term in the continuity equation  and by replacing the geopotential by a constant when undifferentiated.  It is shown that these equations have only one steady state solution  which is similar to the low velocity solution in the more general  system. The approximations act thus as a filter of large velocity  solutions. Solutions of the simplified equations are obtained by  formulating the equations in wave number space. Examples indicate that a  maximum wave number of 30 is sufficient to obtain solutions of  sufficient accuracy.
						
					Downloads
			Download data is not yet available.
		
	Article Details
Once an article is accepted for publication, the author(s) agree that, from that date on, the owner of the copyright of their work(s) is Atmósfera.
Reproduction of the published articles (or sections thereof) for non-commercial purposes is permitted, as long as the source is provided and acknowledged.
Authors are free to upload their published manuscripts at any non-commercial open access repository.